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We consider several enumeration problems of TSSCPPs (totally
symmetric self-complementary plane partitions) and establish
certain bijections with (domino) plane partitions under some
conditions. We show that the enumaration of the (domino) plane
partitions is closely related to Littlewood’s formulae or Cauchy’s
formulae of Schur functions.
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A plane partition is an array π = (πij)i,j≥1 of nonnegative integers
such that π has finite support (i.e., finitely many nonzero entries)
and is weakly decreasing in rows and columns. If

∑
i,j≥1 πij = n,

then we write |π| = n and say that π is a plane partition of n, or π
has the weight n.

.

Example

.

.

.

. ..

.

.

A plane partition of 14

3 2 1 1 0 . . .

2 2 1 0 . . .

1 1 0 0 . . .

0 0 0
. . .
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Let π = (πij)i,j≥1 be a plane partition.

A part is a positive entry πij > 0.

The shape of π is the ordinary partition λ for which π has λi

nonzero parts in the ith row.

We say that π has r rows if r = `(λ). Similarly, π has s
columns if s = `(λ′).

.

Example
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A plane partition of shape (432) with 3 rows and 4 columns:

3 2 1 1
2 2 1
1 1
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The Ferrers graph D(π) of π is the subset of P3 defined by

D(π) =
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In the paper “Self-complementary totally symmetric plane
partitions” (J. Combin. Theory Ser. A 42, (1986), 277–292),
W.H. Mills, D.P. Robbins and H. Rumsey have defined totally
symmetric self-complementary plane partitions (TSSCPPs).
A plane partition is said to be totally symmetric
self-complementary plane parition of size 2n if it is totally
symmetric and (2n, 2n, 2n)-self-complementary.
We denote the set of all self-complementary totally symmetric
plane partitions of size 2n by Sn.
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A plane partition is said to be column-strict if it is strictly
decreasing in coulumns.

.

Example

.

.

.

. ..

. .

π = 5 5 4 3 3 3 1

4 4 2 2 1 1

3 2 1 1

1 1

is a column-strict plane partition.
We write x π = x6

1 x3
2 x4

3 x3
4 x2

5 , where x = (x1, x2, . . . ) is a tuple of
variables.
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.

Let x = (x1, . . . , xn) be an n-tuple of variables.
The Schur function sλ(x) is, by definition,

sλ(x ) =
∑

π

x π,

where the sum runs over all column-strict plane partitions of shape
λ and each part ≤ n.

Schur functions are symmetric functions.

sλ(x ) =
det(x

λj+n−j

i )1≤i,j≤n

det(xn−j
i )1≤i,j≤n

Schur functions are known as the irreducible characters of the
general linear groups.
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An Example of Schur functions
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Example

.

.

.

. ..

.

.

If λ = (22) and x = (x1, x2, x3), then the followings are
column-strict plane partitions with all parts ≤ 3.

2 2

1 1

3 2

1 1

3 3

1 1

3 2

2 1

3 3

2 1

3 3

2 2

Hence we have

s(22)(x1, x2, x3) = x2
1 x2

2 + x2
1 x2

3 + x2
2 x2

3 + x2
1 x2x3 + x1x2

2 x3 + x1x2x2
3 .
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Littlewood’s identity
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Let x = (x1, . . . , xn) be n-tuple of variables. Then

∑

λ

sλ(x ) =
n∏

i=1

(1 − xi)
−1

∏

1≤i<j≤n

(1 − xixj)
−1,

where the sum runs over all partitions λ such that `(λ) ≤ n.

.

A Littlewood type identity (the bounded version)

.

.

.

. ..

.

.

∑
λ

λ1≤k

sλ(x ) =
det(x j−1

i − xk+2n−j
i )1≤i,j≤n∏n

i=1(1 − xi)
∏

1≤i<j≤n(xj − xi)(1 − xixj)
,

where the sum runs over all partitions λ contained in the rectangle
n × k .
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Totally symmetric self-complementary plane partitions

.

.

Littlewood type identities

.

Littlewood’s identity

.

.

.

. ..

.

.

Let x = (x1, . . . , xn) be n-tuple of variables. Then

∑

λ

sλ(x ) =
n∏

i=1

(1 − xi)
−1

∏

1≤i<j≤n

(1 − xixj)
−1,

where the sum runs over all partitions λ such that `(λ) ≤ n.

.

A Littlewood type identity (the bounded version)

.

.

.

. ..

.

.

∑
λ

λ1≤k

sλ(x ) =
det(x j−1

i − xk+2n−j
i )1≤i,j≤n∏n

i=1(1 − xi)
∏

1≤i<j≤n(xj − xi)(1 − xixj)
,

where the sum runs over all partitions λ contained in the rectangle
n × k .
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Totally symmetric self-complementary plane partitions

.

.

Caushy type identities

.

The Caushy identity

.

.

.

. ..

.

.

Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be n-tuples of variables.

∑

λ

sλ(x )sλ(y ) =
n∏

i,j=1

(1 − xiyj)
−1,

where the sum runs over all partitions λ such that `(λ) ≤ n.

.

A Cauchy type identity

.

.

.

. ..

.

.

An easy consequence of the above identity is the following:
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Totally symmetric self-complementary plane partitions

.

.

Caushy type identities

.

The Caushy identity

.

.

.

. ..

.

.

Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be n-tuples of variables.

∑

λ

sλ(x )sλ(y ) =
n∏

i,j=1

(1 − xiyj)
−1,

where the sum runs over all partitions λ such that `(λ) ≤ n.

.

A Cauchy type identity

.

.

.

. ..

.

.

An easy consequence of the above identity is the following:

∑

(λ,µ)

sλ(x )sµ(y ) =
n∏

i=1

(1 − xi)
−1

n∏

i,j=1

(1 − xiyj)
−1,

where the sum runs over all pair (λ, µ) of partitions such that λ ⊇ µ
and λ \ µ is a horizontal strip.
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. . . . . .

Totally symmetric self-complementary plane partitions

.

.

Caushy type identities

.

The Caushy identity

.

.

.

. ..

.

.

Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be n-tuples of variables.

∑

λ

sλ(x )sλ(y ) =
n∏

i,j=1

(1 − xiyj)
−1,

where the sum runs over all partitions λ such that `(λ) ≤ n.

.

A Cauchy type identity

.

.

.

. ..

.

.

An easy consequence of the above identity is the following:

∑

(λ,µ)

sλ(x )sµ(y ) =
n∏

j=1

(1 + yj)
n∏

i,j=1

(1 − xiyj)
−1,

where the sum runs over all pair (λ, µ) of partitions such that λ ⊆ µ
and µ \ λ is a vertical strip.
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Totally symmetric self-complementary plane partitions

.

.

Restricted column-strict plane partitions

.

Definition

.

.

.

. ..

.

.

Let Pn denote the set of (ordinary) plane partitions c = (cij)1≤i,j

subject to the constraints that

(C1) c is column-strict;

(C2) jth column is less than or equal to n − j.

We call an element of Pn a restricted column-strict plane partition.
A part cij of c is said to be saturated if cij = n − j.

.

Example

.

.

.

. ..

.

.
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. . . . . .

Totally symmetric self-complementary plane partitions

.

.

Restricted column-strict plane partitions

.

Definition

.

.

.

. ..

.

.

Let Pn denote the set of (ordinary) plane partitions c = (cij)1≤i,j

subject to the constraints that

(C1) c is column-strict;

(C2) jth column is less than or equal to n − j.

We call an element of Pn a restricted column-strict plane partition.
A part cij of c is said to be saturated if cij = n − j.

.

Example

.

.

.

. ..

.

.
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. . . . . .

Totally symmetric self-complementary plane partitions

.

.

Restricted column-strict plane partitions

.

Definition

.

.

.

. ..

.

.

Let Pn denote the set of (ordinary) plane partitions c = (cij)1≤i,j

subject to the constraints that

(C1) c is column-strict;

(C2) jth column is less than or equal to n − j.

We call an element of Pn a restricted column-strict plane partition.
A part cij of c is said to be saturated if cij = n − j.

.

Example

.

.

.

. ..

.

.
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. . . . . .

Totally symmetric self-complementary plane partitions

.

.

Restricted column-strict plane partitions

.

Definition

.

.

.

. ..

.

.

Let Pn denote the set of (ordinary) plane partitions c = (cij)1≤i,j

subject to the constraints that

(C1) c is column-strict;

(C2) jth column is less than or equal to n − j.

We call an element of Pn a restricted column-strict plane partition.
A part cij of c is said to be saturated if cij = n − j.

.

Example

.

.

.

. ..

.

.
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. . . . . .

Totally symmetric self-complementary plane partitions

.

.

Restricted column-strict plane partitions

.

Definition

.

.

.

. ..

.

.

Let Pn denote the set of (ordinary) plane partitions c = (cij)1≤i,j

subject to the constraints that

(C1) c is column-strict;

(C2) jth column is less than or equal to n − j.

We call an element of Pn a restricted column-strict plane partition.
A part cij of c is said to be saturated if cij = n − j.

.

Example

.

.

.

. ..

.

.
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. . . . . .

Totally symmetric self-complementary plane partitions

.

.

Restricted column-strict plane partitions

.

Definition

.

.

.

. ..

.

.

Let Pn denote the set of (ordinary) plane partitions c = (cij)1≤i,j

subject to the constraints that

(C1) c is column-strict;

(C2) jth column is less than or equal to n − j.

We call an element of Pn a restricted column-strict plane partition.
A part cij of c is said to be saturated if cij = n − j.

.

Example

.

.

.

. ..

.

.

P1 consists of the single element ∅.
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Totally symmetric self-complementary plane partitions

.

.

Restricted column-strict plane partitions

.

Definition

.

.

.

. ..

.

.

Let Pn denote the set of (ordinary) plane partitions c = (cij)1≤i,j

subject to the constraints that

(C1) c is column-strict;

(C2) jth column is less than or equal to n − j.

We call an element of Pn a restricted column-strict plane partition.
A part cij of c is said to be saturated if cij = n − j.

.

Example

.

.

.

. ..

.

.

P2 consists of the following 2 elements:

∅ 1
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Totally symmetric self-complementary plane partitions

.

.

Restricted column-strict plane partitions

.

Definition

.

.

.

. ..

.

.

Let Pn denote the set of (ordinary) plane partitions c = (cij)1≤i,j

subject to the constraints that

(C1) c is column-strict;

(C2) jth column is less than or equal to n − j.

We call an element of Pn a restricted column-strict plane partition.
A part cij of c is said to be saturated if cij = n − j.

.

Example

.

.

.

. ..

.

.

P2 consists of the following 2 elements:

∅ 1
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. . . . . .

Totally symmetric self-complementary plane partitions

.

.

Restricted column-strict plane partitions

.

Definition

.

.

.

. ..

.

.

Let Pn denote the set of (ordinary) plane partitions c = (cij)1≤i,j

subject to the constraints that

(C1) c is column-strict;

(C2) jth column is less than or equal to n − j.

We call an element of Pn a restricted column-strict plane partition.
A part cij of c is said to be saturated if cij = n − j.

.

Example

.

.

.

. ..

.

.

P3 consists of the followng 7 elements:

∅ 1 1 1 2 2 1 2
1

2 1
1
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Totally symmetric self-complementary plane partitions

.

.

Restricted column-strict plane partitions

.

Definition

.

.

.

. ..

.

.

Let Pn denote the set of (ordinary) plane partitions c = (cij)1≤i,j

subject to the constraints that

(C1) c is column-strict;

(C2) jth column is less than or equal to n − j.

We call an element of Pn a restricted column-strict plane partition.
A part cij of c is said to be saturated if cij = n − j.

.

Example

.

.

.

. ..

.

.

P3 consists of the followng 7 elements:

∅ 1 1 1 2 2 1 2
1

2 1
1
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Totally symmetric self-complementary plane partitions

.

.

More General Definition

.

Definition

.

.

.

. ..

.

.

Let Pn,m denote the set of (ordinary) plane partitions c = (cij)1≤i,j

subject to the constraints that

(C1) c is column-strict;

(C2) jth column is less than or equal to m + n − j.

(C3) c has at most n columns.

.

Example

.

.

.

. ..

.

.
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. . . . . .

Totally symmetric self-complementary plane partitions

.

.

More General Definition

.

Definition

.

.

.

. ..

.

.

Let Pn,m denote the set of (ordinary) plane partitions c = (cij)1≤i,j

subject to the constraints that

(C1) c is column-strict;

(C2) jth column is less than or equal to m + n − j.

(C3) c has at most n columns.

.

Example

.

.

.

. ..

.

.
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. . . . . .

Totally symmetric self-complementary plane partitions

.

.

More General Definition

.

Definition

.

.

.

. ..

.

.

Let Pn,m denote the set of (ordinary) plane partitions c = (cij)1≤i,j

subject to the constraints that

(C1) c is column-strict;

(C2) jth column is less than or equal to m + n − j.

(C3) c has at most n columns.

.

Example

.

.

.

. ..

.

.
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. . . . . .

Totally symmetric self-complementary plane partitions

.

.

More General Definition

.

Definition

.

.

.

. ..

.

.

Let Pn,m denote the set of (ordinary) plane partitions c = (cij)1≤i,j

subject to the constraints that

(C1) c is column-strict;

(C2) jth column is less than or equal to m + n − j.

(C3) c has at most n columns.

.

Example

.

.

.

. ..

.

.
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. . . . . .

Totally symmetric self-complementary plane partitions

.

.

More General Definition

.

Definition

.

.

.

. ..

.

.

Let Pn,m denote the set of (ordinary) plane partitions c = (cij)1≤i,j

subject to the constraints that

(C1) c is column-strict;

(C2) jth column is less than or equal to m + n − j.

(C3) c has at most n columns.

.

Example

.

.

.

. ..

.

.

P0,4 consists of the followng 1 element:

∅
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Totally symmetric self-complementary plane partitions

.

.

More General Definition

.

Definition

.

.

.

. ..

.

.

Let Pn,m denote the set of (ordinary) plane partitions c = (cij)1≤i,j

subject to the constraints that

(C1) c is column-strict;

(C2) jth column is less than or equal to m + n − j.

(C3) c has at most n columns.

.

Example

.

.

.

. ..

.

.

P1,3 consists of the followng 8 elements:

∅ 1 2 2
1

3 3
1

3
2

3
2
1
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Totally symmetric self-complementary plane partitions

.

.

More General Definition

.

Example

.

.

.

. ..

.

.

P2,2 consists of the followng 25 elements:

∅ 1 1 1 2 2 1 2 2 2
1

2 1
1

2 2
1

2 2
1 1

3 3 1 3 2 3
1

3 1
1

3 2
1

3 2
1 1

3
2

3 1
2

3 2
2

3 2
2 1

3
2
1

3 1
2
1

3 2
2
1

3 2
2 1
1

P3,1 = P4,0 consists of 42 elements.
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Totally symmetric self-complementary plane partitions

.

.

Another bijection

.

Theorem

.

.

.

. ..

.

.

Let n be a positive integer.
Then we can consruct a bijection from Sn to Pn.

.

Example

.

.

.

. ..

.

.
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Totally symmetric self-complementary plane partitions

.

.

Another bijection

.

Theorem

.

.

.

. ..

.

.

Let n be a positive integer.
Then we can consruct a bijection from Sn to Pn.

.

Example

.

.

.

. ..

.

.

π1

−→

n = 3

∅
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Totally symmetric self-complementary plane partitions

.

.

Another bijection

.

Theorem

.

.

.

. ..

.

.

Let n be a positive integer.
Then we can consruct a bijection from Sn to Pn.

.

Example

.

.

.

. ..

.

.

π2

−→

n = 3

1
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Totally symmetric self-complementary plane partitions

.

.

Another bijection

.

Theorem

.

.

.

. ..

.

.

Let n be a positive integer.
Then we can consruct a bijection from Sn to Pn.

.

Example

.

.

.

. ..

.

.

π3

−→

n = 3

1 1
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Totally symmetric self-complementary plane partitions

.

.

Another bijection

.

Theorem

.

.

.

. ..

.

.

Let n be a positive integer.
Then we can consruct a bijection from Sn to Pn.

.

Example

.

.

.

. ..

.

.

π4

−→

n = 3

2
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Totally symmetric self-complementary plane partitions

.

.

Another bijection

.

Theorem

.

.

.

. ..

.

.

Let n be a positive integer.
Then we can consruct a bijection from Sn to Pn.

.

Example

.

.

.

. ..

.

.

π5

−→

n = 3

2 1
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Totally symmetric self-complementary plane partitions

.

.

Another bijection

.

Theorem

.

.

.

. ..

.

.

Let n be a positive integer.
Then we can consruct a bijection from Sn to Pn.

.

Example

.

.

.

. ..

.

.

π6

−→

n = 3

2

1
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Totally symmetric self-complementary plane partitions

.

.

Another bijection

.

Theorem

.

.

.

. ..

.

.

Let n be a positive integer.
Then we can consruct a bijection from Sn to Pn.

.

Example

.

.

.

. ..

.

.

π7

−→

n = 3

2 1

1
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Totally symmetric self-complementary plane partitions

.

.

Mills-Robbins-Rumsey statistics in words of RCSPP

.

Definition

.

.

.

. ..

.

.

Let c = (cij)1≤i,j ∈Pn and k = 1, . . . , n.
Let Uk (c) denote the number of parts equal to k plus the number
of saturated parts less than k .

.

Example

.

.

.

. ..

. .

5 5 4 2 2

4 4 3 1

3 2 2

2 1

1
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Totally symmetric self-complementary plane partitions

.

.

Mills-Robbins-Rumsey statistics in words of RCSPP

.

Definition

.

.

.

. ..

.

.

Let c = (cij)1≤i,j ∈Pn and k = 1, . . . , n.
Let Uk (c) denote the number of parts equal to k plus the number
of saturated parts less than k .

.

Example

.

.

.

. ..

. .

5 5 4 2 2

4 4 3 1

3 2 2

2 1

1
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Totally symmetric self-complementary plane partitions

.

.

Mills-Robbins-Rumsey statistics in words of RCSPP

.

Definition

.

.

.

. ..

.

.

Let c = (cij)1≤i,j ∈Pn and k = 1, . . . , n.
Let Uk (c) denote the number of parts equal to k plus the number
of saturated parts less than k .

.

Example

.

.

.

. ..

. .

5 5 4 2 2

4 4 3 1

3 2 2

2 1

1
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Totally symmetric self-complementary plane partitions

.

.

Mills-Robbins-Rumsey statistics in words of RCSPP

.

Definition

.

.

.

. ..

.

.

Let c = (cij)1≤i,j ∈Pn and k = 1, . . . , n.
Let Uk (c) denote the number of parts equal to k plus the number
of saturated parts less than k .

.

Example

.

.

.

. ..

. .

n = 7, c ∈P3, Saturated parts

5 5 4 2 2

4 4 3 1

3 2 2

2 1

1
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Totally symmetric self-complementary plane partitions

.

.

Mills-Robbins-Rumsey statistics in words of RCSPP

.

Definition

.

.

.

. ..

.

.

Let c = (cij)1≤i,j ∈Pn and k = 1, . . . , n.
Let Uk (c) denote the number of parts equal to k plus the number
of saturated parts less than k .

.

Example

.

.

.

. ..

. .

n = 7, c ∈P3, k = 1, U1(c) = 3

5 5 4 2 2

4 4 3 1

3 2 2

2 1

1
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Totally symmetric self-complementary plane partitions

.

.

Mills-Robbins-Rumsey statistics in words of RCSPP

.

Definition

.

.

.

. ..

.

.

Let c = (cij)1≤i,j ∈Pn and k = 1, . . . , n.
Let Uk (c) denote the number of parts equal to k plus the number
of saturated parts less than k .

.

Example

.

.

.

. ..

. .

n = 7, c ∈P3, k = 2, U2(c) = 5

5 5 4 2 2

4 4 3 1

3 2 2

2 1

1
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Totally symmetric self-complementary plane partitions

.

.

Mills-Robbins-Rumsey statistics in words of RCSPP

.

Definition

.

.

.

. ..

.

.

Let c = (cij)1≤i,j ∈Pn and k = 1, . . . , n.
Let Uk (c) denote the number of parts equal to k plus the number
of saturated parts less than k .

.

Example

.

.

.

. ..

. .

n = 7, c ∈P3, k = 3, U3(c) = 3

5 5 4 2 2

4 4 3 1

3 2 2

2 1

1
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Totally symmetric self-complementary plane partitions

.

.

Mills-Robbins-Rumsey statistics in words of RCSPP

.

Definition

.

.

.

. ..

.

.

Let c = (cij)1≤i,j ∈Pn and k = 1, . . . , n.
Let Uk (c) denote the number of parts equal to k plus the number
of saturated parts less than k .

.

Example

.

.

.

. ..

. .

n = 7, c ∈P3, k = 4, U4(c) = 4

5 5 4 2 2

4 4 3 1

3 2 2

2 1

1
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Totally symmetric self-complementary plane partitions

.

.

Mills-Robbins-Rumsey statistics in words of RCSPP

.

Definition

.

.

.

. ..

.

.

Let c = (cij)1≤i,j ∈Pn and k = 1, . . . , n.
Let Uk (c) denote the number of parts equal to k plus the number
of saturated parts less than k .

.

Example

.

.

.

. ..

. .

n = 7, c ∈P3, k = 5, U5(c) = 4

5 5 4 2 2

4 4 3 1

3 2 2

2 1

1
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Totally symmetric self-complementary plane partitions

.

.

Mills-Robbins-Rumsey statistics in words of RCSPP

.

Definition

.

.

.

. ..

.

.

Let c = (cij)1≤i,j ∈Pn and k = 1, . . . , n.
Let Uk (c) denote the number of parts equal to k plus the number
of saturated parts less than k .

.

Example

.

.

.

. ..

. .

n = 7, c ∈P3, k = 6, U6(c) = 3

5 5 4 2 2

4 4 3 1

3 2 2

2 1

1
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Totally symmetric self-complementary plane partitions

.

.

Mills-Robbins-Rumsey statistics in words of RCSPP

.

Definition

.

.

.

. ..

.

.

Let c = (cij)1≤i,j ∈Pn and k = 1, . . . , n.
Let Uk (c) denote the number of parts equal to k plus the number
of saturated parts less than k .

.

Example

.

.

.

. ..

. .

n = 7, c ∈P3, k = 7, U7(c) = 3

5 5 4 2 2

4 4 3 1

3 2 2

2 1

1
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Totally symmetric self-complementary plane partitions

.

.

The Bender-Knuth involution

.

The Bender-Knuth involution

.

.

.

. ..

.

.

A classical method to prove that a Schur function is symmetric is to
define involutions fk on column-strict plane partitions c which
swaps the number of k ’s and (k − 1)’s, for each k . Consider the
parts of c equal to k or k − 1. If both of k and k − 1 appear in the
same column, we say k and k − 1 paired. The other unpaired k ’s
and k − 1’s are swaped in each row.

.

Example

.

.

.

. ..

.

.

f2 acts on the following column-strict plane partitions:

5 5 4 3 3 3 3 2 2 2

4 4 3 2 2 2 1 1

3 2 1 1

2 1

Masao Ishikawa Refined Enumeration of TSSCPPs



. . . . . .

Totally symmetric self-complementary plane partitions

.

.

The Bender-Knuth involution

.

The Bender-Knuth involution

.

.

.

. ..

.

.

A classical method to prove that a Schur function is symmetric is to
define involutions fk on column-strict plane partitions c which
swaps the number of k ’s and (k − 1)’s, for each k . Consider the
parts of c equal to k or k − 1. If both of k and k − 1 appear in the
same column, we say k and k − 1 paired. The other unpaired k ’s
and k − 1’s are swaped in each row.

.

Example

.

.

.

. ..

.

.

f2 acts on the following column-strict plane partitions:

5 5 4 3 3 3 3 2 2 2

4 4 3 2 2 2 1 1

3 2 1 1

2 1
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Totally symmetric self-complementary plane partitions

.

.

The Bender-Knuth involution

.

The Bender-Knuth involution

.

.

.

. ..

.

.

A classical method to prove that a Schur function is symmetric is to
define involutions fk on column-strict plane partitions c which
swaps the number of k ’s and (k − 1)’s, for each k . Consider the
parts of c equal to k or k − 1. If both of k and k − 1 appear in the
same column, we say k and k − 1 paired. The other unpaired k ’s
and k − 1’s are swaped in each row.

.

Example

.

.

.

. ..

.

.

f2 acts on the following column-strict plane partitions:

5 5 4 3 3 3 3 2 2 2

4 4 3 2 2 2 1 1

3 2 1 1

2 1
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Totally symmetric self-complementary plane partitions

.

.

The Bender-Knuth involution

.

The Bender-Knuth involution

.

.

.

. ..

.

.

A classical method to prove that a Schur function is symmetric is to
define involutions fk on column-strict plane partitions c which
swaps the number of k ’s and (k − 1)’s, for each k . Consider the
parts of c equal to k or k − 1. If both of k and k − 1 appear in the
same column, we say k and k − 1 paired. The other unpaired k ’s
and k − 1’s are swaped in each row.

.

Example

.

.

.

. ..

.

.

f2 acts on the following column-strict plane partitions:

5 5 4 3 3 3 3 2 2 2

4 4 3 2 2 2 1 1

3 2 1 1

2 1
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Totally symmetric self-complementary plane partitions

.

.

The Bender-Knuth involution

.

The Bender-Knuth involution

.

.

.

. ..

.

.

A classical method to prove that a Schur function is symmetric is to
define involutions fk on column-strict plane partitions c which
swaps the number of k ’s and (k − 1)’s, for each k . Consider the
parts of c equal to k or k − 1. If both of k and k − 1 appear in the
same column, we say k and k − 1 paired. The other unpaired k ’s
and k − 1’s are swaped in each row.

.

Example

.

.

.

. ..

.

.

f2 acts on the following column-strict plane partitions:

5 5 4 3 3 3 3 2 1 1

4 4 3 2 2 1 1 1

3 2 2 1

1 1

5 5 4 3 3 3 3 2 2 2

4 4 3 2 2 2 1 1

3 2 1 1

2 1
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Totally symmetric self-complementary plane partitions

.

.

The Bender-Knuth involution

.

The Bender-Knuth involution

.

.

.

. ..

.

.

A classical method to prove that a Schur function is symmetric is to
define involutions fk on column-strict plane partitions c which
swaps the number of k ’s and (k − 1)’s, for each k . Consider the
parts of c equal to k or k − 1. If both of k and k − 1 appear in the
same column, we say k and k − 1 paired. The other unpaired k ’s
and k − 1’s are swaped in each row.

.

Example

.

.

.

. ..

.

.

f2 acts on the following column-strict plane partitions:

5 5 4 3 3 3 3 2 2 2

4 4 3 2 2 2 1 1

3 2 1 1

2 1
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Totally symmetric self-complementary plane partitions

.

.

The Bender-Knuth involution

.

Remark

.

.

.

. ..

.

.

f2 gives a proof of

sλ(x2, x1, x3, . . . , xn) = sλ(x1, x2, x3, . . . , xn).

Hence sλ(x1, x2, . . . , xn) is a symmetric function.
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Totally symmetric self-complementary plane partitions

.

.

Twisted Bender-Knuth involution

.

Definition

.

.

.

. ..

.

.

If k ≥ 2, we define a Bender-Knuth-type involution π̃k on Pn which
swaps k ’s and (k − 1)’s where we ignore saturated (k − 1) when
we perform a swap.

.

Example

.

.

.

. ..

. .
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Totally symmetric self-complementary plane partitions

.

.

Twisted Bender-Knuth involution

.

Definition

.

.

.

. ..

.

.

If k ≥ 2, we define a Bender-Knuth-type involution π̃k on Pn which
swaps k ’s and (k − 1)’s where we ignore saturated (k − 1) when
we perform a swap.

.

Example

.

.

.

. ..

. .

n = 7 Apply π̃3 to the following c ∈P3.

5 5 4 2 2

4 4 3 1

3 2 2

2 1

1
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Totally symmetric self-complementary plane partitions

.

.

Twisted Bender-Knuth involution

.

Definition

.

.

.

. ..

.

.

If k ≥ 2, we define a Bender-Knuth-type involution π̃k on Pn which
swaps k ’s and (k − 1)’s where we ignore saturated (k − 1) when
we perform a swap.

.

Example

.

.

.

. ..

. .

n = 7 Apply π̃3 to the following c ∈P3.

5 5 4 2 2

4 4 3 1

3 2 2

2 1

1
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Totally symmetric self-complementary plane partitions

.

.

Twisted Bender-Knuth involution

.

Definition

.

.

.

. ..

.

.

If k ≥ 2, we define a Bender-Knuth-type involution π̃k on Pn which
swaps k ’s and (k − 1)’s where we ignore saturated (k − 1) when
we perform a swap.

.

Example

.

.

.

. ..

. .

n = 7 Then we obtain the following π̃3(c) ∈P3.

5 5 4 3 2

4 4 3 1

3 3 2

2 1

1
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Totally symmetric self-complementary plane partitions

.

.

Twisted Bender-Knuth involution

.

Definition

.

.

.

. ..

.

.

We define an involution π̃1 on Pn similarly assuming the outside of
the shape is filled with 0.

.

Example

.

.

.

. ..

. .
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Totally symmetric self-complementary plane partitions

.

.

Twisted Bender-Knuth involution

.

Definition

.

.

.

. ..

.

.

We define an involution π̃1 on Pn similarly assuming the outside of
the shape is filled with 0.

.

Example

.

.

.

. ..

. .

n = 7 Apply π̃1 to the following c ∈P3.

5 5 4 3 2

4 4 3 2 1

3 1

1
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Totally symmetric self-complementary plane partitions

.

.

Twisted Bender-Knuth involution

.

Definition

.

.

.

. ..

.

.

We define an involution π̃1 on Pn similarly assuming the outside of
the shape is filled with 0.

.

Example

.

.

.

. ..

. .

n = 7 Apply π̃1 to the following c ∈P3.

5 5 4 3 2 1

4 4 3 2

3 1 1
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Totally symmetric self-complementary plane partitions

.

.

Flips in words of RCSPP

.

Definition

.

.

.

. ..

.

.

We define involutions on Pn

ρ̃ = π̃2π̃4π̃6 · · · ,
γ̃ = π̃1π̃3π̃5 · · · ,

and we put P ρ̃
n (resp. P γ̃

n ) the set of elements Pn invariant under
ρ̃ (resp. γ̃).

Masao Ishikawa Refined Enumeration of TSSCPPs



. . . . . .

Totally symmetric self-complementary plane partitions

.

.

Flips in words of RCSPP

.

Definition

.

.

.

. ..

.

.

We define involutions on Pn

ρ̃ = π̃2π̃4π̃6 · · · ,
γ̃ = π̃1π̃3π̃5 · · · ,

and we put P ρ̃
n (resp. P γ̃

n ) the set of elements Pn invariant under
ρ̃ (resp. γ̃).

.

Conjecture 4 (Conjecture 4 of Mills, Robbins and Rumsey, “Self-complementary totally symmetric plane

partitions”, J. Combin. Theory Ser. A 42, (1986).)

.

.

.

. ..

.

.

Let n ≥ 2 and r , 0 ≤ r ≤ n be integers. Then the number of
elements c in Pn with ρ̃(c) = c and U1(c) = r would be the same
as the number of n by n alternating sign matrices a invariant under
the half turn in their own planes (that is aij = an+1−i,n+1−i for
1 ≤ i, j ≤ n) and satisfying a1,r = 1.
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Totally symmetric self-complementary plane partitions

.

.

Flips in words of RCSPP

.

Definition

.

.

.

. ..

.

.

We define involutions on Pn

ρ̃ = π̃2π̃4π̃6 · · · ,
γ̃ = π̃1π̃3π̃5 · · · ,

and we put P ρ̃
n (resp. P γ̃

n ) the set of elements Pn invariant under
ρ̃ (resp. γ̃).

.

Conjecture 6 (Conjecture 6 of Mills, Robbins and Rumsey, “Self-complementary totally symmetric plane

partitions”, J. Combin. Theory Ser. A 42, (1986).)

.

.

.

. ..

.

.

Let n ≥ 3 an odd integer and i, 0 ≤ i ≤ n − 1 be an integer. Then
the number of c in Pn with γ(c) = c and U2(c) = i would be the
same as the number of n by n alternating sign matrices with
ai1 = 1 and which are invariant under the vertical flip (that is
aij = ai,n+1−j for 1 ≤ i, j ≤ n).
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Totally symmetric self-complementary plane partitions

.

.

Invariants under ρ̃

.

Example

.

.

.

. ..

.

.

P ρ̃
1 = {∅}
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Totally symmetric self-complementary plane partitions

.

.

Invariants under ρ̃

.

Example

.

.

.

. ..

.

.

P ρ̃
2 =

{
∅, 1

}
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Totally symmetric self-complementary plane partitions

.

.

Invariants under ρ̃

.

Example

.

.

.

. ..

.

.

P ρ̃
3 is composed of the following 3 RCSPPs:

∅ 2
1

2 1
1
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Totally symmetric self-complementary plane partitions

.

.

Invariants under ρ̃

.

Example

.

.

.

. ..

.

.

P ρ̃
4 is composed of the following 10 elements:

∅ 2 1 2 1 1 2
1

2 2
1 1

2 2 1
1 1

3 3
2
1

3 2
2 1
1

3 2 1
2 1
1
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Totally symmetric self-complementary plane partitions

.

.

Invariants under ρ̃

.

Example

.

.

.

. ..

.

.

P ρ̃
5 has 25 elements, and P ρ̃

6 has 140 elements.
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Totally symmetric self-complementary plane partitions

.

.

Invariants under γ̃

.

Proposition

.

.

.

. ..

.

.

If c ∈Pn is invariant under γ̃, then n must be an odd integer.

.

Example

.

.

.

. ..

.

.

Thus we have P γ̃
3 =

{
1

}
,

P γ̃
5 is composed of the following 3 RCSPPs:

1 1 3 2 1
1

3 3 1
2 2
1

and P γ̃
5 has 26 elements.
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Totally symmetric self-complementary plane partitions

.

.

Invariants under γ̃

.

Proposition

.

.

.

. ..

.

.

If c ∈Pn is invariant under γ̃, then n must be an odd integer.

.

Example

.

.

.

. ..

.

.

Thus we have P γ̃
3 =

{
1

}
,

P γ̃
5 is composed of the following 3 RCSPPs:

1 1 3 2 1
1

3 3 1
2 2
1

and P γ̃
5 has 26 elements.

Masao Ishikawa Refined Enumeration of TSSCPPs



. . . . . .

Totally symmetric self-complementary plane partitions

.

.

Invariants under γ̃

.

Theorem

.

.

.

. ..

.

.

If c ∈P2n+1 is invariant under γ̃, then c has no saturated parts.

.

Example

.

.

.

. ..

.

.
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Totally symmetric self-complementary plane partitions

.

.

Invariants under γ̃

.

Theorem

.

.

.

. ..

.

.

If c ∈P2n+1 is invariant under γ̃, then c has no saturated parts.

.

Example

.

.

.

. ..

.

.

The following c ∈P11 is invariant under γ̃:

7 7 6 6 3 2 1 1

5 5 4 3 1

4 3 2 2

1 1
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Totally symmetric self-complementary plane partitions

.

.

Invariants under γ̃

.

Theorem

.

.

.

. ..

.

.

If c ∈P2n+1 is invariant under γ̃, then c has no saturated parts.

.

Example

.

.

.

. ..

.

.

Remove all 1’s from c ∈P γ̃
11.

7 7 6 6 3 2 1 1

5 5 4 3 1

4 3 2 2

1 1
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Totally symmetric self-complementary plane partitions

.

.

Invariants under γ̃

.

Theorem

.

.

.

. ..

.

.

If c ∈P2n+1 is invariant under γ̃, then c has no saturated parts.

.

Example

.

.

.

. ..

.

.

Then we obtain a PP in which each row has even length.

7 7 6 6 3 2

5 5 4 3

4 3 2 2
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Totally symmetric self-complementary plane partitions

.

.

Invariants under γ̃

.

Theorem

.

.

.

. ..

.

.

If c ∈P2n+1 is invariant under γ̃, then c has no saturated parts.

.

Example

.

.

.

. ..

.

.

Identify 3 with 2, 5 with 4, and 7 with 6.

7 7 6 6 3 2

5 5 4 3

4 3 2 2
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Totally symmetric self-complementary plane partitions

.

.

Invariants under γ̃

.

Theorem

.

.

.

. ..

.

.

If c ∈P2n+1 is invariant under γ̃, then c has no saturated parts.

.

Example

.

.

.

. ..

.

.

Repace 3 and 2 by dominos containing 1, 5 and 4 by dominos con-
taining 2, 7 and 6 by dominos containing 3.

3 3 1

2
2

1
1
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Totally symmetric self-complementary plane partitions

.

.

Column-strict domino plane partitions

.

Definition

.

.

.

. ..

.

.

Let m and n ≥ 1 be nonnegative integers. Let Dn,m denote the set
of column-strict domino plane partitions d = (dij)1≤i,j such that

(D1) d has at most n columns;

(D2) each number in a domino which cross the jth column does not
exceed d(n + m − j)/2e.

If a number in a domino which cross the jth column of c is equal to
d(n + m − j)/2e, we call it a saturated part. Let DR

n,m (resp. DC
n,m)

denote the set of all d ∈ Dn,m which satisfy the condition that

(D3) each row (resp. column) of d has even length.

When m = 0, we write Dn for Dn,0, DR
n for DR

n,0 and DC
n for DC

n,0.
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Totally symmetric self-complementary plane partitions

.

.

Column-strict domino plane partitions

.

Definition

.

.

.

. ..

.

.

Let m and n ≥ 1 be nonnegative integers. Let Dn,m denote the set
of column-strict domino plane partitions d = (dij)1≤i,j such that

(D1) d has at most n columns;

(D2) each number in a domino which cross the jth column does not
exceed d(n + m − j)/2e.

If a number in a domino which cross the jth column of c is equal to
d(n + m − j)/2e, we call it a saturated part. Let DR

n,m (resp. DC
n,m)

denote the set of all d ∈ Dn,m which satisfy the condition that

(D3) each row (resp. column) of d has even length.

When m = 0, we write Dn for Dn,0, DR
n for DR

n,0 and DC
n for DC

n,0.
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Totally symmetric self-complementary plane partitions

.

.

Column-strict domino plane partitions

.

Definition

.

.

.

. ..

.

.

Let m and n ≥ 1 be nonnegative integers. Let Dn,m denote the set
of column-strict domino plane partitions d = (dij)1≤i,j such that

(D1) d has at most n columns;

(D2) each number in a domino which cross the jth column does not
exceed d(n + m − j)/2e.

If a number in a domino which cross the jth column of c is equal to
d(n + m − j)/2e, we call it a saturated part. Let DR

n,m (resp. DC
n,m)

denote the set of all d ∈ Dn,m which satisfy the condition that

(D3) each row (resp. column) of d has even length.

When m = 0, we write Dn for Dn,0, DR
n for DR

n,0 and DC
n for DC

n,0.
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Totally symmetric self-complementary plane partitions

.

.

Column-strict domino plane partitions

.

Definition

.

.

.

. ..

.

.

Let m and n ≥ 1 be nonnegative integers. Let Dn,m denote the set
of column-strict domino plane partitions d = (dij)1≤i,j such that

(D1) d has at most n columns;

(D2) each number in a domino which cross the jth column does not
exceed d(n + m − j)/2e.

If a number in a domino which cross the jth column of c is equal to
d(n + m − j)/2e, we call it a saturated part. Let DR

n,m (resp. DC
n,m)

denote the set of all d ∈ Dn,m which satisfy the condition that

(D3) each row (resp. column) of d has even length.

When m = 0, we write Dn for Dn,0, DR
n for DR

n,0 and DC
n for DC

n,0.
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Totally symmetric self-complementary plane partitions

.

.

Column-strict domino plane partitions

.

Definition

.

.

.

. ..

.

.

Let m and n ≥ 1 be nonnegative integers. Let Dn,m denote the set
of column-strict domino plane partitions d = (dij)1≤i,j such that

(D1) d has at most n columns;

(D2) each number in a domino which cross the jth column does not
exceed d(n + m − j)/2e.

If a number in a domino which cross the jth column of c is equal to
d(n + m − j)/2e, we call it a saturated part. Let DR

n,m (resp. DC
n,m)

denote the set of all d ∈ Dn,m which satisfy the condition that

(D3) each row (resp. column) of d has even length.

When m = 0, we write Dn for Dn,0, DR
n for DR

n,0 and DC
n for DC

n,0.
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Totally symmetric self-complementary plane partitions

.

.

Column-strict domino plane partitions

.

Definition

.

.

.

. ..

.

.

Let m and n ≥ 1 be nonnegative integers. Let Dn,m denote the set
of column-strict domino plane partitions d = (dij)1≤i,j such that

(D1) d has at most n columns;

(D2) each number in a domino which cross the jth column does not
exceed d(n + m − j)/2e.

If a number in a domino which cross the jth column of c is equal to
d(n + m − j)/2e, we call it a saturated part. Let DR

n,m (resp. DC
n,m)

denote the set of all d ∈ Dn,m which satisfy the condition that

(D3) each row (resp. column) of d has even length.

When m = 0, we write Dn for Dn,0, DR
n for DR

n,0 and DC
n for DC

n,0.
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Totally symmetric self-complementary plane partitions

.

.

A bijection

.

Theorem

.

.

.

. ..

.

.

Let n be a positive integer. Let τ2n+1 denote our bijection of P γ̃
2n+1

onto DR
2n−1. Then we have U1(τ2n+1(c)) = U2(c).

.

Example

.

.

.

. ..

. .
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Totally symmetric self-complementary plane partitions

.

.

A bijection

.

Theorem

.

.

.

. ..

.

.

Let n be a positive integer. Let τ2n+1 denote our bijection of P γ̃
2n+1

onto DR
2n−1. Then we have U1(τ2n+1(c)) = U2(c).

.

Example

.

.

.

. ..

. .
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Totally symmetric self-complementary plane partitions

.

.

A bijection

.

Theorem

.

.

.

. ..

.

.

Let n be a positive integer. Let τ2n+1 denote our bijection of P γ̃
2n+1

onto DR
2n−1. Then we have U1(τ2n+1(c)) = U2(c).

.

Example

.

.

.

. ..

. .

DR
1 = {∅} is the set of column-strict domino plane partitions with all

columns ≤ 0.
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Theorem
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.

.

Let n be a positive integer. Let τ2n+1 denote our bijection of P γ̃
2n+1

onto DR
2n−1. Then we have U1(τ2n+1(c)) = U2(c).

.

Example

.

.

.

. ..

. .

DR
3 is composed of the following 3 elements:

∅, 1 , 1 1
.

This is the set of column-strict domino plane partitions with the first
and second columns ≤ 1, other columns ≤ 0 and each row of even
length.
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.

DR
5 is the set of column-strict domino plane partitions with the 1st

and 2nd columns ≤ 2, the 3rd and 4th columns ≤ 1, other columns
≤ 0 and each row of even length (26 elements):

∅ 1 1 1 2 2 1 2
1

2 1
1

2
1

1 1 1 1 2 1 2 2 1 1 1 1

2 1 1 1 2 2 1 1 1 1
1

2 1
1

2 2
1

2 1

1 1

2

1 1

2

1 1
1 1 2 2

1

2 2

1

1
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.

.

2 2

1

1 1 2 2

1 1

2 2

1 1

1
2 2

1 1

1 1

DR
7 is the set of column-strict domino plane partitions with the 1st

and 2nd columns ≤ 3, the 3rd and 4th columns ≤ 2, the 5rd and
6th columns ≤ 1, other columns ≤ 0 and each row of even length
(646 elements).
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Statistics on Domino plane partitions

.

Definition

.

.

.

. ..

. .

For d ∈ Dn,m and a positive integer r ≥ 1, let Ur(d) denote the
number of parts equal to r plus the number of saturated parts less
than r .
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.

Theorem (Stanton-White, Carré-Leclerc)

.

.

.

. ..

.

.

We can define a map which associate a pair of column-strict plane
partitions in Pn,m with a domino plane partition in Dn,m.
Let Φ denote the map which associate the pair (c0, c1) of
column-strict plane partitions with a column-strict domino plane
partition d.

Color 0 Color 0 Color 1 Color 1
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Domino plane partition

.

Example

.

.

.

. ..

.

.

For example, we associate the column-strict domino plane partition

3 3 1

2
2
1

1
d =

the pair

c0 = 1 1 c1 = 3 3 1

2 2

of plane partitions.
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.

Theorem

.

.
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. ..

.

.

Let d be a column-strict domino plane partition, and let
(c0, c1) = Φ(d). Then

(i) All columns of d have even length if, and only if, shc1 ⊆ shc0

and shc0 \ shc1 is a vertical strip.

(ii) All rows of d have even length if, and only if, shc0 ⊆ shc1 and
shc1 \ shc0 is a horizontal strip.
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From RCSPPs to lattce paths

.

Theorem

.

.

.

. ..

.

.

Let V = {(x, y) ∈ N2 : 0 ≤ y ≤ x} be the vertex set, and direct an
edge from u to v whenever v − u = (1,−1) or (0,−1).
Let uj = (n − j, n − j) and vj = (λj + n − j, 0) for j = 1, . . . , n, and let
uuu = (u1, . . . , un) and vvv = (v1, . . . , vn). We claim that the c ∈Pn

of shape λ′ can be identified with n-tuples of nonintersecting
D-paths in P (uuu,vvv).
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R
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R
R
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R
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Example of lattice paths

.

Example

.

.

.

. ..

.

.

n = 7, c ∈P7: RCSPP

5 5 4 2 2

4 4 3 1

3 2 2

2 1

1
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Lattice paths
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Weight of each edge

.

Definition

.

.

.

. ..

.

.

Let u → v be an edge in from u to v.

.

.
.

1 We assign the weight


∏n

k=j tk · xj if j = i,

tjxj if j < i,

to the horizontal edge from u = (i, j) to v = (i + 1, j − 1).

.

.

.

2 We assign the weight 1 to the vertical edge from u = (i, j) to
v = (i, j − 1).

We write

tttU(c)xxxc = tU1(c)
1 · · · tUn(c)

n x] 1’s in c
1 · · · x] n’s in c

n .
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.

Theorem

.
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.

Let n be a positive integer. Let λ be a partition such that `(λ) ≤ n.
Then the generating function of all plane partitions c ∈Pn of

shape λ′ with the weight tttU(c)xxxc is given by

∑
c∈Pn
shc=λ′

tttU(c)xxxc = det
(
e(n−i)
λj−j+i(t1x1, . . . , tn−i−1xn−i−1,Tn−ixn−i)

)
1≤i,j≤n

,

where Ti =
∏n

k=i tk .

∅ 1 1 1 2 2 1 2
1

2 1
1

1 t1x1 t2
1 t2t3x2

1 t2t3x1x2 t1t2t3x1x2 t1t2t3x1x2 t2
1 t2

2 t2
3 x2

1 x2
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A determinantal expression

.

Theorem

.

.

.

. ..

.

.

Let n be a positive integer. Then there is a bijection τ2n+1 from
P γ̃

2n+1 to DR
2n−1 such that U1(τ2n+1(c)) = U2(c) for c ∈P γ̃

2n+1.

.

Theorem

.

.

.

. ..

.

.

Let n ≥ 2 be a positive integer. Let Ro
n (t) = (Ro

i,j)0≤i,j≤n−1 be the
n × n matrix where

Ro
i,j =

(
i + j − 1

2i − j

)
+

{(
i + j − 1
2i − j − 1

)
+

(
i + j − 1

2i − j + 1

)}
t +

(
i + j − 1

2i − j

)
t2

with the convention that Ro
0,0 = Ro

0,1 = 1. Then we obtain

∑

c∈Pγ
2n+1

tU2(c) = det Ro
n (t).
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Let n be a positive integer. Then there is a bijection τ2n+1 from
P γ̃

2n+1 to DR
2n−1 such that U1(τ2n+1(c)) = U2(c) for c ∈P γ̃

2n+1.

.

Theorem

.

.

.

. ..

.

.

Let n ≥ 2 be a positive integer. Let Ro
n (t) = (Ro

i,j)0≤i,j≤n−1 be the
n × n matrix where

Ro
i,j =

(
i + j − 1

2i − j

)
+

{(
i + j − 1
2i − j − 1

)
+

(
i + j − 1

2i − j + 1

)}
t +

(
i + j − 1

2i − j

)
t2

with the convention that Ro
0,0 = Ro

0,1 = 1. Then we obtain

∑

c∈Pγ
2n+1

tU2(c) = det Ro
n (t).
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.

.

The determinants

.

Example

.

.

.

. ..

.

.

If n = 2, then
∑

c∈P γ̃
5

tU2(c) is given by

det

(
1 1
0 1 + t + t2

)

which is equal to 1 + t + t2.
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.

.

The determinants

.

Example

.

.

.

. ..

.

.

If n = 3, then
∑

c∈P γ̃
7

tU2(c) is given by

det


1 1 0
0 1 + t + t2 1 + 2t + t2

0 t 3 + 4t + 3t2



which is equal to 3 + 6t + 8t2 + 6t3 + 3t4.
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The determinants

.

Example

.

.

.
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.

.

If n = 4, then
∑

c∈P γ̃
7

tU2(c) is given by

det



1 1 0 0
0 1 + t + t2 1 + 2t + t2 t
0 t 3 + 4t + 3t2 4 + 7t + 4t2

0 0 1 + 4t + t2 10 + 15t + 10t2



which is equal to 26 + 78t + 138t2 + 162t3 + 138t4 + 78t5 + 26t6.
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.

A constant term expression for the determinant

.

Theorem

.

.

.

. ..

.

.

Let n ≥ 2 be a positive integer, and r be a positive integer such that
1 ≤ r ≤ n. Then the generating function

∑
b∈P γ̃

2n−1
tUr (b) is given by

CTx CTy

∏

1≤i<j≤n

(
1 − xi

xj

) ∏

1≤i<j≤n

(
1 − yi

yj

) n∏

i=2

(
1 +

1
xi

)i−2 (
1 +

t
xi

)

×
n∏

j=2

(
1 +

1
yj

)j−2 (
1 +

t
yj

) n∏

j=1

(1 + yj)
n∏

i,j=1

1
1 − xiyj

.
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Totally symmetric self-complementary plane partitions

.

.

Generalized domino plane partitions

.

Generalized domino plane partitions

.

.

.

. ..

.

.

A domino is a special kind of skew shape consists of two squares.
A 1 × 2 domino is called a horizontal domino while a 2 × 1 domino
is called a vertical domino. A generalized domino plane partition
of shape λ consists of a tiling of the shape λ by means of ordinary
1 × 1 squares or dominoes, and a filling of each square or domino
with a positive integer so that the integers are weakly decreasing
along either rows or columns. Further we call it a domino plane
partition if the shape λ is tiled with only dominoes.
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Totally symmetric self-complementary plane partitions

.

.

Generalized domino plane partitions

.

Example

.

.

.

. ..

.

.

The left-below is a column-strict generalized domino plane
partition of shape (4, 3, 2, 1), and the right-below is a column-strict
domino plane partition of shape (4, 4, 2).

2

1

2

1

1
1 2

1 1

1 1
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Totally symmetric self-complementary plane partitions

.

.

Twisted domino plane partitions

.

Definition

.

.

.

. ..

.

.

Let m and n ≥ 1 be nonnegative integers. Let PHTS
n,m denote the set

of column-strict generalized domino plane partitions c subject to
the constraints that

(E1) c has at most n columns;

(E2) each part in the jth column does not exceed d(n + m − j)/2e;
(E3) A domino containing d(n + m − j)/2e must not cross the jth

column for any j such that n + m − j is odd.

(E4) A single box can appear only when it contains d(n + m − j)/2e
and it is in the jth column such that n + m − j is odd.

We call an element in PHTS
n,m a twisted domino plane partition, and

we simply write PHTS
n for PHTS

n,0 .
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Let m and n ≥ 1 be nonnegative integers. Let PHTS
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Totally symmetric self-complementary plane partitions

.

.

Twisted domino plane partitions

.

Example

.

.

.

. ..

.

.

PHTS
1 = {∅}

PHTS
2 =

{
∅, 111

}

PHTS
3 is composed of the following 3 elements:

∅ 1 1
111
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Totally symmetric self-complementary plane partitions

.

.

Twisted domino plane partitions

.

Example

.

.

.

. ..

.

.

PHTS
4 is composed of the following 10 elements:

∅ 1 1 111 1 1 1

1 1
111 222 222

1

222

1
1

222

1
1

111

PHTS
5 has 25 elements and PHTS

6 has 140 elements.
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Totally symmetric self-complementary plane partitions

.

. Twisted domino PPs and RCSDPPs with all columns of
even length

.

Conjecture

.

.

.

. ..

.

.

For a positive integer n, there would be a bijection between PHTS
n

(the set of twisted domono PPs) and DC
n (the set of restricted

column-strict domino PPs with all columns of even length) which
has the following property;

.

.

.

1 the numeber of 1’s is kept invariant;

.

.

.

2 the number of columns is kept invariant.
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.

General Conjecture

.
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.

For a positive integer n, there would be a bijection between PHTS
n,m

(the set of twisted domono PPs) and DC
n,m (the set of restricted

column-strict domino PPs with all columns of even length) which
has the following property;

.

.

.

1 the numeber of 1’s is kept invariant;

.

.

.

2 the number of columns of each PP is kept invariant.
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.

.

RCSDPPs with all columns of even length

.

Example

.

.

.

. ..

.

.

DC
1 = {∅}

DC
2 =

∅, 111


DC

3 has the following 3 elements:

∅, 1
,

1 1
.
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.

.

RCSDPPs with all columns of even length

.

Example

.

.

.

. ..

.

.

DC
4 has the following 10 elements:

∅, 1
,

2
,

1 1
,

2 1
,

1 1 1
,

2 1 1
,

2

1
,

2 1

1
,

2 1 1

1
.

DC
5 has 25 elements, DC

6 has 140 elements, and DC
7 has 588

elements.
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Totally symmetric self-complementary plane partitions

.

.

A determinantal expression

.

Theorem

.

.

.

. ..

.

.

Let n be a positive integer and let r be a integer such that
0 ≤ r ≤ n.
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.
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A determinantal expression

.

Theorem

.

.

.

. ..

.

.

Let n be a positive integer and let r be a integer such that
0 ≤ r ≤ n. If n is even, let Ce

n (t) = (Ce
i,j)0≤i,j≤n/2−1 be the

n/2 × n/2 matrix where

Ce
ij =

{
2

(
i + j − 2
2i − j − 1

)
+

(
i + j − 2

2i − j

)}
(1 + t2)

+

{
2

(
i + j − 2
2i − j − 2

)
+

(
i + j − 2
2i − j − 1

)
+ 2

(
i + j − 2

2i − j

)
+

(
i + j − 2

2i − j + 1

)}
t

with the convention that Ce
0,0 = 1 + t , Ce

0,1 = t and Ce
1,0 = 0 .

Then we obtain ∑

d∈DC
n

tUr (d) = det Ce
n (t).
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.

Theorem
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.

Let n be a positive integer and let r be a integer such that
0 ≤ r ≤ n. If n is even, let Ce

n (t) = (Ce
i,j)0≤i,j≤n/2−1 be the n/2 × n/2

matrix where

Ce
ij =

{
2

(
i + j − 2
2i − j − 1

)
+

(
i + j − 2

2i − j

)}
(1 + t2)

+

{
2

(
i + j − 2
2i − j − 2

)
+

(
i + j − 2
2i − j − 1

)
+ 2

(
i + j − 2

2i − j

)
+

(
i + j − 2

2i − j + 1

)}
t

with the convention that Ce
0,0 = 1 + t , Ce

0,1 = t and Ce
1,0 = 0 .

Then we obtain ∑

d∈DC
n

tUr (d) = det Ce
n (t).
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A determinantal expression

.

Theorem

.

.

.

. ..

.

.

Let n be a positive integer and let r be a integer such that
0 ≤ r ≤ n. If n is odd, let Co

n (t) = (Co
i,j)0≤i,j≤(n−1)/2 be the

(n + 1)/2 × (n + 1)/2 matrix where

Co
ij =

{
2

(
i + j − 3
2i − j − 2

)
+

(
i + j − 3
2i − j − 1

)}
(1 + t2)

+

{
2

(
i + j − 3
2i − j − 3

)
+

(
i + j − 3
2i − j − 2

)
+ 2

(
i + j − 3
2i − j − 1

)
+

(
i + j − 3

2i − j

)}
t

with the convention that Co
0,0 = 1, Co

0,1 = Co
0,2 = Co

2,0 = 0,

Co
1,0 = 1 + t and Co

1,1 = 1 + t + t2 . Then we obtain

∑

d∈DC
n

tUr (d) = det Co
n (t).
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A determinantal expression

.

Theorem

.

.
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.

Let n be a positive integer and let r be a integer such that
0 ≤ r ≤ n. If n is odd, let Co

n (t) = (Co
i,j)0≤i,j≤(n−1)/2 be the

(n + 1)/2 × (n + 1)/2 matrix where

Co
ij =

{
2

(
i + j − 3
2i − j − 2

)
+

(
i + j − 3
2i − j − 1

)}
(1 + t2)

+

{
2

(
i + j − 3
2i − j − 3

)
+

(
i + j − 3
2i − j − 2

)
+ 2

(
i + j − 3
2i − j − 1

)
+

(
i + j − 3

2i − j

)}
t

with the convention that Co
0,0 = 1, Co

0,1 = Co
0,2 = Co

2,0 = 0,

Co
1,0 = 1 + t and Co

1,1 = 1 + t + t2 . Then we obtain

∑

d∈DC
n

tUr (d) = det Co
n (t).
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A constant term expression for the determinant

.

Theorem

.

.

.

. ..

.

.

Let n ≥ 2 be a positive integer, and r be a positive integer such that
1 ≤ r ≤ n. Then the generating function

∑
b∈P γ̃

2n−1
tUr (b) is given by

CTx CTy

∏

1≤i<j≤n

(
1 − xi

xj

) ∏

1≤i<j≤n

(
1 − yi

yj

) n∏

i=2

(
1 +

1
xi

)i−2 (
1 +

t
xi

)

×
n∏

j=2

(
1 +

1
yj

)j−2 (
1 +

t
yj

) n∏

i=1

(1 − xi)
−1

n∏

i,j=1

1
1 − xiyj

.
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.

.

Monotone triangle conjecture

.

Definition

.

.

.

. ..

.

.

Let A k
n denote the set of n × n alternating sign matrices

a = (aij)1≤i,j≤n such that

aij = 0 if i − j > k .

.

Example

.

.

.

. ..

.

.
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.

Monotone triangle conjecture

.

Definition

.

.

.

. ..

.

.

Let A k
n denote the set of n × n alternating sign matrices

a = (aij)1≤i,j≤n such that

aij = 0 if i − j > k .

.

Example

.

.

.

. ..

.

.

n = 3, k = 0: 
1 0 0
0 1 0
0 0 1



The generating function is 1.
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Totally symmetric self-complementary plane partitions

.

.

Monotone triangle conjecture

.

Definition

.

.

.

. ..

.

.

Let A k
n denote the set of n × n alternating sign matrices

a = (aij)1≤i,j≤n such that

aij = 0 if i − j > k .

.

Example

.

.

.

. ..

.

.

n = 3, k = 1:


1 0 0
0 1 0
0 0 1




1 0 0
0 0 1
0 1 0




0 1 0
1 0 0
0 0 1




0 0 1
1 0 0
0 1 0




0 1 0
1 −1 1
0 1 0



The generating function is 2 + 2t + t2.
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.

.

Monotone triangle conjecture

.

Definition

.

.

.

. ..

.

.

Let A k
n denote the set of n × n alternating sign matrices

a = (aij)1≤i,j≤n such that

aij = 0 if i − j > k .

.

Example

.

.

.

. ..

.

.

n = 3, k = 2:


1 0 0
0 1 0
0 0 1




1 0 0
0 0 1
0 1 0




0 1 0
1 0 0
0 0 1



0 1 0
0 0 1
1 0 0




0 0 1
1 0 0
0 1 0




0 0 1
0 1 0
1 0 0




0 1 0
1 −1 1
0 1 0



The generating function is 2 + 3t + 2t2.
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.

.

Pk
n,m

.

Definition

.

.

.

. ..

.

.

Let Pk
n,m denote the set of RCSPPs c ∈Pn,m such that

c has at most k rows.

We write Pk
n for Pk

n,0.

.

Example

.

.

.

. ..

.

.
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Totally symmetric self-complementary plane partitions

.

.

Pk
n,m

.

Definition

.

.

.

. ..

.

.

Let Pk
n,m denote the set of RCSPPs c ∈Pn,m such that

c has at most k rows.

We write Pk
n for Pk

n,0.

.

Example

.

.

.

. ..

.

.
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Totally symmetric self-complementary plane partitions

.

.

Pk
n,m

.

Definition

.

.

.

. ..

.

.

Let Pk
n,m denote the set of RCSPPs c ∈Pn,m such that

c has at most k rows.

We write Pk
n for Pk

n,0.

.

Example

.

.

.

. ..

.

.

If n = 3 and k = 0, P0
3 consists of the single PP:

∅.
∑

c∈P0
3

tUr (c) = 1
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Totally symmetric self-complementary plane partitions

.

.

Pk
n,m

.

Definition

.

.

.

. ..

.

.

Let Pk
n,m denote the set of RCSPPs c ∈Pn,m such that

c has at most k rows.

We write Pk
n for Pk

n,0.

.

Example

.

.

.

. ..

.

.

If n = 3 and k = 1, P1
3 consists of the following 5 PPs:

∅ 1 1 1 2 2 1

∑
c∈P1

3
tUr (c) = 2 + 2t + t2
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.

.

Pk
n,m

.

Definition

.

.

.

. ..

.

.

Let Pk
n,m denote the set of RCSPPs c ∈Pn,m such that

c has at most k rows.

We write Pk
n for Pk

n,0.

.

Example

.

.

.

. ..

.

.

If n = 3 and k = 2, B2
3 consists of the followng 7 PPs

∅ 1 1 1 2 2 1 2
1

2 1
1

∑
c∈P2

3
tUr (c) = 2 + 3t + 2t2
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.

. The Mills-Robins-Rumsey conjecture in words of
RCSPPs

.

Conjecture (Conjecture 7 of Mills, Robbins and Rumsey, “Self-complementary totally symmetric plane partitions”,

J. Combin. Theory Ser. A 42, (1986).)

.

.

.

. ..

. .

Let n, k and r be integers such that n ≥ 2, 0 ≤ k ≤ n − 1 and
0 ≤ r ≤ n. Then the number of c in Pk

n with Ur(c) = j would be
the same as the number of alternating sign matrices
a = (aij)1≤i,j≤n ∈ A k

n such that a1j = 1.
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Totally symmetric self-complementary plane partitions

.

. The Mills-Robins-Rumsey conjecture in words of
RCSPPs

.

Conjecture (Conjecture 7 of Mills, Robbins and Rumsey, “Self-complementary totally symmetric plane partitions”,

J. Combin. Theory Ser. A 42, (1986).)

.

.

.

. ..

. .

Let n, k and r be integers such that n ≥ 2, 0 ≤ k ≤ n − 1 and
0 ≤ r ≤ n. Then the number of c in Pk

n with Ur(c) = j would be
the same as the number of alternating sign matrices
a = (aij)1≤i,j≤n ∈ A k

n such that a1j = 1.
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.

.

A Pfaffian formula

.

Theorem

.

.

.

. ..

.

.

Let n ≥ 2 be a positive integer, and k be a positive integer such
that 1 ≤ k ≤ n. If r is a positive integer such that 1 ≤ r ≤ n, then
the generating function for all plane partitions c ∈Pk

n with the

weight tUr (c) is given by

∑

c∈Pk
n

tUr (c) = lim
ε→0

ε−b
k
2 cPf


On JnBN

n (t)

−tBN
n (t)Jn L̄ (n,k)

n+N (ε)

 .

.

Definition

.

.

.

. ..

.

.
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Totally symmetric self-complementary plane partitions

.

.

A Pfaffian formula

.

Theorem

.

.

.

. ..

.

.

Let n ≥ 2 be a positive integer, and k be a positive integer such
that 1 ≤ k ≤ n. If r is a positive integer such that 1 ≤ r ≤ n, then
the generating function for all plane partitions c ∈Pk

n with the

weight tUr (c) is given by

∑

c∈Pk
n

tUr (c) = lim
ε→0

ε−b
k
2 cPf


On JnBN

n (t)

−tBN
n (t)Jn L̄ (n,k)

n+N (ε)

 .

.

Definition

.

.

.

. ..

.

.

For positive integers n and N, let BN
n (t) = (bij(t))0≤i≤n−1, 0≤j≤n+N−1

be the n × (n + N) matrix whose (i, j)th entry is

bij(t) =


δ0,j if i = 0,(
i−1
j−i

)
+

(
i−1

j−i−1

)
t otherwise.
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Totally symmetric self-complementary plane partitions

.

.

A Pfaffian formula

.

Theorem

.

.

.

. ..

.

.

Let n ≥ 2 be a positive integer, and k be a positive integer such
that 1 ≤ k ≤ n. If r is a positive integer such that 1 ≤ r ≤ n, then
the generating function for all plane partitions c ∈Pk

n with the

weight tUr (c) is given by

∑

c∈Pk
n

tUr (c) = lim
ε→0

ε−b
k
2 cPf


On JnBN

n (t)

−tBN
n (t)Jn L̄ (n,k)

n+N (ε)

 .

.

Definition

.

.

.

. ..

.

.

For positive integers n, let Jn = (δi,n+1−j)1≤i,j≤n be the n × n
anti-diagonal matrix.
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Totally symmetric self-complementary plane partitions

.

.

A Pfaffian formula

.

Theorem

.

.

.

. ..

.

.

Let n ≥ 2 be a positive integer, and k be a positive integer such
that 1 ≤ k ≤ n. If r is a positive integer such that 1 ≤ r ≤ n, then
the generating function for all plane partitions c ∈Pk

n with the

weight tUr (c) is given by

∑

c∈Pk
n

tUr (c) = lim
ε→0

ε−b
k
2 cPf


On JnBN

n (t)

−tBN
n (t)Jn L̄ (n,k)

n+N (ε)

 .

.

Definition

.

.

.

. ..

.

.

L̄ (m,k)
n (ε) = (̄l(m,k)

ij (ε))1≤i,j≤n (k is even)

l̄(m,k)
ij (ε) =


(−1)j−i−1ε if 1 ≤ i < j ≤ n and i ≤ m + k ,

(−1)j−i−1 if m + k < i < j ≤ n.
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Totally symmetric self-complementary plane partitions

.

.

A Pfaffian formula

.

Theorem

.

.

.

. ..

.

.

Let n ≥ 2 be a positive integer, and k be a positive integer such
that 1 ≤ k ≤ n. If r is a positive integer such that 1 ≤ r ≤ n, then
the generating function for all plane partitions c ∈Pk

n with the

weight tUr (c) is given by

∑

c∈Pk
n

tUr (c) = lim
ε→0

ε−b
k
2 cPf


On JnBN

n (t)

−tBN
n (t)Jn L̄ (n,k)

n+N (ε)

 .

.

Definition

.

.

.

. ..

.

.

L̄ (m,k)
n (ε) = (̄l(m,k)

ij (ε))1≤i,j≤n (k is odd)

l̄(m,k)
ij (ε) =


(−1)j−i−1ε if 1 ≤ i < j ≤ m + k ,

(−1)j−i−1 if 1 ≤ i < j ≤ n and m + k < j.
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.

.

A constant term identity

.

Theorem

.

.

.

. ..

.

.

Let n be a positive integer. If 0 ≤ k ≤ n − 1 and 1 ≤ r ≤ n, then∑
c∈Pk

n
tUr (c) is equal to

CTxxx

∏

1≤i<j≤n

(
1 − xi

xj

) n∏

i=2

(
1 +

1
xi

)i−2 (
1 +

t
xi

)

×
det(x j−1

i − xk+2n−j
i )1≤i,j≤n∏n

i=1(1 − xi)
∏

1≤i<j≤n(xj − xi)(1 − xixj)
.

Masao Ishikawa Refined Enumeration of TSSCPPs



. . . . . .

Totally symmetric self-complementary plane partitions

.

.

Example of n = 3

.

Example

.

.

.

. ..

.

.

If n = 3 and k = 0, then the constant term of
(
1 − x1

x2

) (
1 − x1

x3

) (
1 − x2

x3

) (
1 +

t
x2

) (
1 +

1
x3

) (
1 +

t
x3

)

× 1

(1 − x1) (1 − x2) (1 − x3)

×
det


1 − x5

1 x1 − x4
1 x2

1 − x3
1

1 − x5
2 x2 − x4

1 x2
2 − x3

2
1 − x5

3 x3 − x4
1 x2

3 − x3
3



(x2 − x1) (x3 − x1) (x3 − x2) (1 − x1x2) (1 − x1x3) (1 − x2x3)

is equal to 1.
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.

.

Example of n = 3

.

Example

.

.

.

. ..

.

.

If n = 3 and k = 1, then the constant term of
(
1 − x1

x2

) (
1 − x1

x3

) (
1 − x2

x3

) (
1 +

t
x2

) (
1 +

1
x3

) (
1 +

t
x3

)

× 1

(1 − x1) (1 − x2) (1 − x3)

×
det


1 − x6

1 x1 − x5
1 x2

1 − x5
1

1 − x6
2 x2 − x5

1 x2
2 − x5

2
1 − x6

3 x3 − x5
1 x2

3 − x5
3



(x2 − x1) (x3 − x1) (x3 − x2) (1 − x1x2) (1 − x1x3) (1 − x2x3)

is equal to 2 + 2t + t2.
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.

.

Example of n = 3

.

Example

.

.

.

. ..

.

.

If n = 3 and k = 2, then the constant term of
(
1 − x1

x2

) (
1 − x1

x3

) (
1 − x2

x3

) (
1 +

t
x2

) (
1 +

1
x3

) (
1 +

t
x3

)

× 1

(1 − x1) (1 − x2) (1 − x3)

×
det


1 − x7

1 x1 − x6
1 x2

1 − x5
1

1 − x7
2 x2 − x6

1 x2
2 − x5

2
1 − x7

3 x3 − x6
1 x2

3 − x5
3



(x2 − x1) (x3 − x1) (x3 − x2) (1 − x1x2) (1 − x1x3) (1 − x2x3)

is equal to 2 + 3t + 2t2.
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The end

Thank you!
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