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Introduction

Abstract

In this talk we give Pfaffian or determinant expressions, and
constant term identities for the conjectures in the paper
“Self-complementary totally symmetric plane partitions” (J.

Combin. Theory Ser. A 42, (1986), 277—292) by W.H. Mills,

D.P. Robbins and H. Rumsey. We also settle a weak version of
Conjecture 6 in the paper, i.e., the number of shifted plane
partitions invariant under a certain involution is equal to the

number of alternating sign matrices invariant under the vertical flip. )
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The conjectures on TSSCPPs

@ Conjecture 2 (The refined TSSCPP conjecture)
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The conjectures on TSSCPPs

@ Conjecture 2 (The refined TSSCPP conjecture)
@ Conjecture 3 (The doubly refined TSSCPP conjecture)
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The conjectures on TSSCPPs

@ Conjecture 2 (The refined TSSCPP conjecture)
@ Conjecture 3 (The doubly refined TSSCPP conjecture)
@ Conjecture 7, 7’ (Related to the monotone triangles)
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The conjectures on TSSCPPs

© Conjecture 2 (The refined TSSCPP conjecture)

@ Conjecture 3 (The doubly refined TSSCPP conjecture)
© Conjecture 7, 7' (Related to the monotone triangles)
© Conjecture 4 (Related to half-turn symmetric ASMs)

Masao Ishikawa Refined Enumerations of TSSCPPs



The conjectures on TSSCPPs

© Conjecture 2 (The refined TSSCPP conjecture)

@ Conjecture 3 (The doubly refined TSSCPP conjecture)
© Conjecture 7, 7' (Related to the monotone triangles)
© Conjecture 4 (Related to half-turn symmetric ASMs)
@ Conjecture 6 (Related to vertical symmetric ASMs)
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Totally symmetric self-complementary plane partitions

Plane partitions

Definition

A plane partition is an array m = (mjj)ij>1 of nonnegative integers
such that 7 has finite support (i.e., finitely many nonzero entries)
and is weakly decreasing in rows and columns.
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Totally symmetric self-complementary plane partitions

Plane partitions

Definition

A plane partition is an array 7 = (7jj)ij=1 Of nonnegative integers
such that 7 has finite support (i.e., finitely many nonzero entries)
and is weakly decreasing in rows and columns. If }’; -, mj = n,
then we write 7] = n and say that x is a plane partition of n, or
has the weight n.
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Totally symmetric self-complementary plane partitions

Plane partitions

Definition

A plane partition is an array 7 = (7jj)ij=1 Of nonnegative integers
such that 7 has finite support (i.e., finitely many nonzero entries)
and is weakly decreasing in rows and columns. If }’; -4 mj = n,
then we write 7] = n and say that x is a plane partition of n, or
has the weight n.

Example
A plane partition of 14

321 1 O
2 21 0
110 O

0 0O
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Totally symmetric self-complementary plane partitions

Shape

Let 7 = ()i j>1 be a plane partition.
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Totally symmetric self-complementary plane partitions

Shape

Let 7 = ()i j>1 be a plane partition.
@ A partis a positive entry mj; > 0.
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Totally symmetric self-complementary plane partitions

Shape

Let 7 = ()i j>1 be a plane partition.
@ A partis a positive entry mj; > 0.

@ The shape of & is the ordinary partition A for which 7 has 4;
nonzero parts in the ith row.
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Totally symmetric self-complementary plane partitions

Let 7 = ()i j>1 be a plane partition.
@ A partis a positive entry mj; > 0.

@ The shape of & is the ordinary partition A for which 7 has 4;
nonzero parts in the ith row.

@ We say that 7 has r rows if r = £(2). Similarly, 7 has s
columns if s = ().

Masao Ishikawa Refined Enumerations of TSSCPPs




Totally symmetric self-complementary plane partitions

Let 7 = ()i j>1 be a plane partition.
@ A partis a positive entry mj; > 0.

@ The shape of & is the ordinary partition A for which 7 has 4;
nonzero parts in the ith row.

@ We say that  has r rows if r = £(A). Similarly, 7 has s
columns if s = £(A’).

A plane partition of shape (432) with 3 rows and 4 columns:

3[2]1]1]
2[2]1
11
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Totally symmetric self-complementary plane partitions

Example of plane partitions

@ Plane partitions of 0: 0
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Totally symmetric self-complementary plane partitions
Example of plane partitions

@ Plane partitions of 0: 0

@ Plane partitions of 1:
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Totally symmetric self-complementary plane partitions
Example of plane partitions

@ Plane partitions of 0: 0

@ Plane partitions of 1:
@ Plane partitions of 2:
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Totally symmetric self-complementary plane partitions
Example of plane partitions

@ Plane partitions of 0: 0

@ Plane partitions of 1:
@ Plane partitions of 2:

@ Plane partitions of 3:

lll
1 1
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Totally symmetric self-complementary plane partitions
Ferrers graph

Definition
The Ferrers graph D(r) of r is the subset of P* defined by

D(r) = {(i.j.k) : k <}
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Totally symmetric self-complementary plane partitions

Ferrers graph

Definition

The Ferrers graph D(r) of r is the subset of P2 defined by

D(r) = {(i..k) : k < mj}

Example

Ferrers graph

312|1]1
2121
111

—>
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Totally symmetric self-complementary plane partitions

Symmetries of plane paritions

Definition

If 7 = (7;) is a plane partition,
then the transpose n* of 7 is
defined by 7* = (7j).

transpose

yavy

v
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Totally symmetric self-complementary plane partitions

Symmetries of plane paritions

Definition

If 7 = (m;) is a plane partition,
then the transpose n* of & is A symmetric PP
defined by 7* = (7j).

@ mis symmetric if 1 = 7* .

v
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Totally symmetric self-complementary plane partitions

Symmetries of plane paritions

Definition
If 7 = (7;) is a plane partition,
then the transpose n* of & is A cyclicaly symmetric PP
defined by 7* = (7j).
@ mis symmetric if 1 = 7* . yay

@ n is cyclically symmetric if
whenever (i,j,k) € 7 then
(,k,i) e 7.

v
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Totally symmetric self-complementary plane partitions

Symmetries of plane paritions

Definition

If 7 = (m;) is a plane partition,
then the transpose n* of & is A totally symmetric PP
defined by 7* = (7j).

@ mis symmetric if 1 = * .

@ r is cyclically symmetric if
whenever (i,j,k) € z then I
(j,k,i) e 7.

@ nis called totally symmetric if
it is cyclically symmetric and
symmetric.

v
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Totally symmetric self-complementary plane partitions
Complement

Let 7 = () be a plane partition contained in the box
B(r,s,t) = [r] x[s] x[t].

[

B(2,3.3)
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Totally symmetric self-complementary plane partitions
Complement

Let 7 = (7;;) be a plane partition contained in the box
= [r]x[s] x[t].

Define the complement 7 of = by

e ={(r+1-i,s+1-j,t+1-k): (i,j,k) ¢n}.

7] comviement ()
Y B
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Totally symmetric self-complementary plane partitions
Complement

Let 7 = (7;;) be a plane partition contained in the box
= [r]x[s] x[t].
Define the complement #° of & by
n={(r+1-i,s+1-jt+1-k): (i,j,k)gn}
@ ris said to be (r, s, t)-self-complementary if 7 = #€. i.e.
(i,j,k)erne (r+1-i,s+1-j,t+1-k)¢n

A (2,3, 3)-self-complementary PP
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Totally symmetric self-complementary plane partitions

Symmetry classes of plane partitions

Symmetry classes (Stanley)

The transformation © and the group Sz generate a group T of order
12. The group T has ten conjugacy classes of subgroups, giving
rise to ten enumeration problems.
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Totally symmetric self-complementary plane partitions

Symmetry classes of plane partitions

Symmetry classes (Stanley)

The transformation © and the group Sz generate a group T of order
12. The group T has ten conjugacy classes of subgroups, giving
rise to ten enumeration problems.
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Totally symmetric self-complementary plane partitions

Symmetry classes of plane partitions

Symmetry classes (Stanley)

The transformation © and the group Sz generate a group T of order
12. The group T has ten conjugacy classes of subgroups, giving
rise to ten enumeration problems.

Ta.ble (R. P. Stanley, “Symmetries of Plane Partitions”, J. Combin. Theory Ser. A 43, 103-113 (1986))

1 | B(r,s,t) Any

2 | B(r,r,t) Symmetric

3 | B(r,r,r) Cyclically symmetric

4 | B(r,r,r) Totally symmetric

5 | B(r,s,t) Self-complementary

6 | B(r,r,t) Complement = transpose

7 | B(r,r,t) Symmetric and self-complementary

8 B(r,r,r) Cyclically symmetric and complement = transpose
9 B(r,r,r) Cyclically symmetric and self-complementary

10 | B(r,r,r) Totally symmetric and self-complementary
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Totally symmetric self-complementary plane partitions

Totally symmetric self-complementary plane partitions

Definition

A plane patrtition is said to be totally symmetric
self-complementary plane parition of size 2n if it is totally
symmetric and (2n, 2n, 2n)-self-complementary.

Masao Ishikawa Refined Enumerations of TSSCPPs



Totally symmetric self-complementary plane partitions

Totally symmetric self-complementary plane partitions

Definition

A plane partition is said to be totally symmetric
self-complementary plane parition of size 2n if it is totally
symmetric and (2n, 2n, 2n)-self-complementary.

We denote the set of all self-complementary totally symmetric
plane partitions of size 2n by .#},.
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Totally symmetric self-complementary plane partitions

Totally symmetric self-complementary plane partitions

Definition

A plane partition is said to be totally symmetric
self-complementary plane parition of size 2n if it is totally
symmetric and (2n, 2n, 2n)-self-complementary.

We denote the set of all self-complementary totally symmetric
plane partitions of size 2n by .7;,.

Example
.71 consists of the single partition
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Totally symmetric self-complementary plane partitions

TSSCPPs of size 4

% consists of the following two partitions:
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Totally symmetric self-complementary plane partitions

TSSCPPs of size 4

% consists of the following two partitions:
77

ﬁ

Masao Ishikawa Refined Enumerations of TSSCPPs



Totally symmetric self-complementary plane partitions

TSSCPPs of size 6

73 consists of the following seven partitions:

T 2

7

77
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Totally symmetric self-complementary plane partitions

TSSCPPs of size 6

73 consists of the following seven partitions:

T3 T4

|| mi
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Totally symmetric self-complementary plane partitions

TSSCPPs of size 6

Example
73 consists of the following seven partitions:

5 T
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Totally symmetric self-complementary plane partitions

TSSCPPs of size 6

Example
73 consists of the following seven partitions:

7
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Totally symmetric self-complementary plane partitions

Triangular shifted plane partitions

Definition (Mills, Robbins and Rumsey)

Let %, denote the set of shifted plane partitions b = (bjj)1<i<;
subject to the constraints that
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Totally symmetric self-complementary plane partitions

Triangular shifted plane partitions

Definition (Mills, Robbins and Rumsey)

Let %, denote the set of shifted plane partitions b = (bjj)1<i<;
subject to the constraints that

(B1) the shifted shape of b is (n—1,n—-2,...,1);
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Totally symmetric self-complementary plane partitions

Triangular shifted plane partitions

Definition (Mills, Robbins and Rumsey)

Let %, denote the set of shifted plane partitions b = (bjj)1<i<;
subject to the constraints that

(B1) the shifted shape ofbis (n—1,n-2,...,1);
B2) n—i<bj<nforl<i<j<n-1.
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Totally symmetric self-complementary plane partitions

Triangular shifted plane partitions

Definition (Mills, Robbins and Rumsey)

Let %, denote the set of shifted plane partitions b = (bjj)1<i<;
subject to the constraints that

(B1) the shifted shape ofbis (n—1,n-2,...,1);
(B2) n—i<bj<nforl<i<j<n-1.

We call an element of 4, a triangular shifted plane partition.
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Totally symmetric self-complementary plane partitions

Triangular shifted plane partitions

Definition (Mills, Robbins and Rumsey)

Let %, denote the set of shifted plane partitions b = (bjj)1<i<;
subject to the constraints that

(B1) the shifted shape ofbis (n—1,n-2,...,1);
(B2) n—i<bj<nforl<i<j<n-1.

We call an element of 4, a triangular shifted plane partition.

9, consists of the single PP 0.
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Totally symmetric self-complementary plane partitions

Triangular shifted plane partitions

Definition (Mills, Robbins and Rumsey)

Let %, denote the set of shifted plane partitions b = (bjj)1<i<;
subject to the constraints that

(B1) the shifted shape ofbis (n—1,n-2,...,1);
(B2) n—i<bj<nforl<i<j<n-1.

We call an element of 4, a triangular shifted plane partition.

A, consists of the following 2 PPs:
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Totally symmetric self-complementary plane partitions

Triangular shifted plane partitions

Definition (Mills, Robbins and Rumsey)

Let %, denote the set of shifted plane partitions b = (bjj)1<i<;
subject to the constraints that

(B1) the shifted shape ofbis (n—1,n-2,...,1);
(B2) n—i<bj<nforl<i<j<n-1.

We call an element of 4, a triangular shifted plane partition.

A3 consists of the followng 7 PPs

[313] [3[3] [3][3] [3]2] [3][2] [2]2] [2]2
3] 2 1 2 1 2 1
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Totally symmetric self-complementary plane partitions

A bijection

Theorem (Mills, Robbins and Rumsey)

Let n be a positive integer.
Then there is a bijection from .#, to %,.
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Totally symmetric self-complementary plane partitions

A bijection

Theorem (Mills, Robbins and Rumsey)
Let n be a positive integer.
Then there is a bijection from .#, to %,.

Zzn " "

R R RRRRRRRRRRRRRRRRRRRRRRRRRRRERERRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRBRBRRRBRRERRRRRRRR
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Totally symmetric self-complementary plane partitions

A bijection

Theorem (Mills, Robbins and Rumsey)
Let n be a positive integer.
Then there is a bijection from .#, to %,.

o n=3

!

R R RRRRRRRRRRRRRRRRRRRRRRRRRRRERERRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRBRBRRRBRRERRRRRRRR
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Totally symmetric self-complementary plane partitions
A bijection
Theorem (Mills, Robbins and Rumsey)

Let n be a positive integer.
Then there is a bijection from .#, to %,.

3 n=3

R R RRRRRRRRRRRRRRRRRRRRRRRRRRRERERRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRBRBRRRBRRERRRRRRRR
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Totally symmetric self-complementary plane partitions

A bijection

Theorem (Mills, Robbins and Rumsey)
Let n be a positive integer.
Then there is a bijection from .#, to %,.

T4 n=3

i
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Totally symmetric self-complementary plane partitions
A bijection
Theorem (Mills, Robbins and Rumsey)

Let n be a positive integer.
Then there is a bijection from .#, to %,.

5 n=3

n - 3|2
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Totally symmetric self-complementary plane partitions
A bijection

Theorem (Mills, Robbins and Rumsey)

Let n be a positive integer.
Then there is a bijection from .#, to %,.

Example

L
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Totally symmetric self-complementary plane partitions
A bijection

Theorem (Mills, Robbins and Rumsey)

Let n be a positive integer.
Then there is a bijection from .#, to %,.

Example

L
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Totally symmetric self-complementary plane partitions

Statistics

Definition (Mills, Robbins and Rumsey)

Let b = (bjj)1<i<j<n-1 be in #,andk =1,...,n,
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Totally symmetric self-complementary plane partitions
Statistics

Definition (Mills, Robbins and Rumsey)

Let b = (bjj)1<i<j<n-1 be in #,andk =1,...,n,

Let
n-k n-1
Uk(b) = Z(bt,t+k—l — britk) + Z x {btn1 >n—t}.
fi=il t=n-k+1
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Totally symmetric self-complementary plane partitions
Statistics

Definition (Mills, Robbins and Rumsey)

Let b = (bjj)1<i<j<n-1 be in #,andk =1,...,n,

Let
n-k n-1
Uk(b) = (btt4+k-1 — brix) + Z x{btn-1>n-t}.
t=1 t=n—k+1

Here We set by, =n—tforallt =1,...,n — 1 by convention,
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Totally symmetric self-complementary plane partitions
Statistics

Definition (Mills, Robbins and Rumsey)

Let b = (bjj)1<i<j<n-1 be in #,andk =1,...,n,

Let
n-k n-1
Uk(b) = Z(bt,t+k—1 —brik) + Z x{btn-1>n-t}.
t=1 t=n—k+1

Here We set by, =n—tforallt =1,...,n — 1 by convention,
and y {...} has value 1 when the statement “..." is true
and 0 otherwise.
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Totally symmetric self-complementary plane partitions
Statistics

n—k n-1
Uk(b) = (btt+k-1 — brik) + Z x{btn-1>n—t}.
t=1 t=n-k-+1

T\ 7|77 7|7
6|16|6[5]|5
514]14]| 4
41414

312
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Totally symmetric self-complementary plane partitions
Statistics

n—k n-1
Uk(b) = (btt+k-1 — brik) + Z x{btn-1>n—t}.
t=1 t=n-k-+1

n=7 k=1, Uy(b)=3

o A A A A
6166 ]5]5
S|414]4

41414
312

2|1

Masao Ishikawa Refined Enumerations of TSSCPPs




Totally symmetric self-complementary plane partitions
Statistics

n—k n-1
Uk(b) = (btt+k-1 — brik) + Z x{btn-1>n—t}.
t=1 t=n-k-+1

n=7 k=2 Uyb)=1
777777
6|6|[6]|5]5
5(ala]a
4|afa
322
2
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Totally symmetric self-complementary plane partitions
Statistics

n—k n-1
Uk(b) = (btt+k-1 — brik) + Z x{btn-1>n—t}.
t=1 t=n-k-+1

n=7 k=3, Usb)=3
777777
6|6|6]|5]|5
5(ala]a
4 afafs
3|2
2
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Totally symmetric self-complementary plane partitions
Statistics

n—k n-1
Uk(b) = (btt+k-1 — brik) + Z x{btn-1>n—t}.
t=1 t=n-k-+1

n=7, k=4, Usb)=2
7177777
6|6|6[5]5
5|a4|afla]a
Y W
3|2
2
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Totally symmetric self-complementary plane partitions
Statistics

n—k n-1
Uk(b) = (btt+k-1 — brik) + Z x{btn-1>n—t}.
t=1 t=n-k-+1

n=7, k=5 Us(b)=2
7177777
6|6|6[5]|5]|5
5|4|afas
Y W
3|2
2
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Totally symmetric self-complementary plane partitions
Statistics

n—k n-1
Uk(b) = (btt+k-1 — brik) + Z x{btn-1>n—t}.
t=1 t=n-k-+1

n=7, k=6, Ug(b)=3
717 777|786
6|6|6]|5]5
3 I
4l4a)a
3|2
2
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Totally symmetric self-complementary plane partitions
Statistics

n—k n-1
Uk(b) = (btt+k-1 — brik) + Z x{btn-1>n—t}.
t=1 t=n-k-+1

n=7 k=7, U/ (b)=3

7177 7|7]|7
6|6|6]|5]|5
5144]2

4|44

3|2
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Totally symmetric self-complementary plane partitions

The refined TSSCPP conjecture

Conjecture (Conjecture 2 of Mills, Robbins and Rumsey, “Self-complementary totally symmetric plane partitions”,
J. Combin. Theory Ser. A 42, (1986).)

Let0O<r<n-1and1<k <n. Then the number of elements b of
P such that Ug(b) = r is the same as the number of n by n
alternating sign matrices a = (a;j) such thatas ;11 = 1.
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Totally symmetric self-complementary plane partitions

The refined TSSCPP conjecture

Conjecture (Conjecture 2 of Mills, Robbins and Rumsey, “Self-complementary totally symmetric plane partitions”,

J. Combin. Theory Ser. A 42, (1986).)

Let0O<r<n-1and1 <k <n. Then the number of elements b of
P such that Ug(b) = r is the same as the number of n by n
alternating sign matrices a = (a;j) such thatas ;11 = 1.

n:3,be<%’3

[3[3] [3]3] [3]3] [3]2] [3]2] [2][2] [2]2
b 3] 2] [1] 2] 1 2] [1]
Ui(b) 2 1 0 2 1 1 0
Up(b) 2 2 1 1 0 1 0
Us(b) 2 2 1 1 0 1 0

4
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Totally symmetric self-complementary plane partitions

The refined TSSCPP conjecture

Conjecture (Conjecture 2 of Mills, Robbins and Rumsey, “Self-complementary totally symmetric plane partitions”,
J. Combin. Theory Ser. A 42, (1986).)

LetO<r <n-1and1 <k < n. Then the number of elements b of
P such that Ug(b) = r is the same as the number of n by n
alternating sign matrices a = (a;j) such thatas ;11 = 1.

Fork =1, 2,3, we have

Z () — 2 4 3t + 2t2.
bEggg
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Totally symmetric self-complementary plane partitions

The refined enumeration of ASM

Zeilberger (1996), Kuperberg (1996)

The number of n by n alternating sign matrices a = (a;) such that
air+1 = 1is equal to

(2nn_—lz) - (3nn_—12)

n—

Here A, is

1 (3i+1)!
o (N4’
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Totally symmetric self-complementary plane partitions

The doubly refined TSSCPP conjecture

Conjecture (Conjecture 3 of Mills, Robbins and Rumsey, “Self-complementary totally symmetric plane partitions”,

J. Combin. Theory Ser. A 42, (1986).)
Letn>2andr, s with0 <r,s < n -1 be integers. Then the
number of partitions in %, with Uy(b) =r and U,(b) = s is the
same as the number of n by n alternating sign matrices a = (a;)
with

airyl = ann-s = L.
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Totally symmetric self-complementary plane partitions
The doubly refined TSSCPP conjecture

Conjecture (Conjecture 3 of Mills, Robbins and Rumsey, “Self-complementary totally symmetric plane partitions”,
J. Combin. Theory Ser. A 42, (1986).)

Letn >2andr, s with0 <r,s <n -1 be integers. Then the
number of partitions in %, with Uy(b) =r and U,(b) = s is the
same as the number of n by n alternating sign matrices a = (a;)
with

air4l = anpn-s = 1.

[3[3] [3[3] [3]3] [3]2] [3]2] [2]2] [2]2
b € %3 13 2] 1] 2] 1] 12 1]
Uy (b) 2 1 0 2 1 1 0
Uz (b) 2 2 1 1 0 1 0
Us(b) 2 2 1 1 0 1 0

v
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Totally symmetric self-complementary plane partitions
The doubly refined TSSCPP conjecture

Conjecture (Conjecture 3 of Mills, Robbins and Rumsey, “Self-complementary totally symmetric plane partitions”,

J. Combin. Theory Ser. A 42, (1986).)
Letn>2andr, s with0 <r,s < n -1 be integers. Then the
number of partitions in %, with Uy(b) =r and U,(b) = s is the
same as the number of n by n alternating sign matrices a = (a;)
with

air4l = anpn-s = 1.

Thus we have

Z tU1(0)U2(b) — 1 4 t 4y + tu + t2u + tu? + t2u2.
b€@3
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Totally symmetric self-complementary plane partitions

The doubly refined enumeration of ASM

Di Francesco and Zinn-Justin (2004)

The doubly-refined ASM number generating function is given by

B {w?(w+t)(w +u)"t

An (t’ u) _ 3n(n—1)/2
XS(Zn) 1+wt 1+ wu 1
sn-1n-D\ "o+t wtu

Here sgn)(xl, ..., Xn) stands for the Schur function in the n
variables x4, ..., Xn, corresponding to the partition A, and
s(n-1,n-1)=(n-1,n-1,n-2,n-2,...,1,1) and w = e?"/3,
(The coefficient of tI=1sk~1 is the number of n x n ASM with a 1 in
position r on the top row (counted from left to right) and k on the
bottom row (counted from right to left).)
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Totally symmetric self-complementary plane partitions

TSSCPP and monotone triangles

Conjecture (Conjecture 7 of Mills, Robbins and Rumsey, “Self-complementary totally symmetric plane partitions”,

J. Combin. Theory Ser. A 42, (1986).)
Forn>2andk =0,...,.n -1, let Z, be the subset of those

b = (bjj)1<i<j in %n such that all by in the first n — 1 — k columns
are equal to their maximum values n. Then the cardinality of %«
is equal to the cardinality of the set of the monotone triangles with
all entries mj; in the first n — 1 — k columns equal to their minimum
valuesj—i+ 1.
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Totally symmetric self-complementary plane partitions

TSSCPP and monotone triangles

Conjecture (Conjecture 7 of Mills, Robbins and Rumsey, “Self-complementary totally symmetric plane partitions”,

J. Combin. Theory Ser. A 42, (1986).)

Forn>2andk =0,...,.n -1, let Z, be the subset of those

b = (bjj)1<i<j in %n such that all by in the first n — 1 — k columns

are equal to their maximum values n.

Example

n = 3, k = 0: The first 2 columns are equal to the maximum

values 3.

Masao Ishikawa Refined Enumerations of TSSCPPs

b e %370
Ui (b)
Uz(b)
Us(b)

E]

3

3

2
2
2




Totally symmetric self-complementary plane partitions

TSSCPP and monotone triangles

Conjecture (Conjecture 7 of Mills, Robbins and Rumsey, “Self-complementary totally symmetric plane partitions”,

J. Combin. Theory Ser. A 42, (1986).)

Forn>2andk =0,...,.n -1, let Z, be the subset of those
b = (bjj)1<i<j in %n such that all by in the first n — 1 — k columns
are equal to their maximum values n.

Fork =1, 2,3, we have

> th®) =2,

b €933,0
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Totally symmetric self-complementary plane partitions

TSSCPP and monotone triangles

Conjecture (Conjecture 7 of Mills, Robbins and Rumsey, “Self-complementary totally symmetric plane partitions”,

J. Combin. Theory Ser. A 42, (1986).)

Forn>2andk =0,...,.n -1, let Z, be the subset of those
b = (bjj)1<i<j in %n such that all by in the first n — 1 — k columns

are equal to their maximum values n.

n = 3, k = 1: The first column equals the maximum values 3.

b e <@3,1
Us(b)
Uz(b)
Us(b)

E]

13]3

13]3

13]2

13]2

2

1
2
2

)

B RN

O O P

4
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Totally symmetric self-complementary plane partitions

TSSCPP and monotone triangles

Conjecture (Conjecture 7 of Mills, Robbins and Rumsey, “Self-complementary totally symmetric plane partitions”,

J. Combin. Theory Ser. A 42, (1986).)

Forn>2andk =0,...,.n -1, let Z, be the subset of those
b = (bjj)1<i<j in %n such that all by in the first n — 1 — k columns
are equal to their maximum values n.

Fork =1, 2,3, we have

Z tU(b) — 1 4 2t 4 212,
bE:@gJ
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Totally symmetric self-complementary plane partitions

TSSCPP and monotone triangles

Conjecture (Conjecture 7 of Mills, Robbins and Rumsey, “Self-complementary totally symmetric plane partitions”,

J. Combin. Theory Ser. A 42, (1986).)

Forn>2andk =0,...,.n -1, let Z, be the subset of those

b = (bjj)1<i<j in %n such that all by in the first n — 1 — k columns
are equal to their maximum values n.

Example

n = 3, k = 2: No restriction.

b e 9332
Us(b)
Uz(b)
Us(b)
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[313] [3[3] [3[3] [3]2] [3]2] [2]2] [2]2
13 2] 1] 2] 1] 2] 1]
2 1 0 2 1 1 0
2 2 1 1 0 1 0
2 2 1 1 0 1 0




Totally symmetric self-complementary plane partitions

TSSCPP and monotone triangles

Conjecture (Conjecture 7 of Mills, Robbins and Rumsey, “Self-complementary totally symmetric plane partitions”,

J. Combin. Theory Ser. A 42, (1986).)

Forn>2andk =0,...,.n -1, let Z, be the subset of those
b = (bjj)1<i<j in %n such that all by in the first n — 1 — k columns
are equal to their maximum values n.

Fork =1, 2,3, we have

Z tU(b) — 2 4 3t 4 212,
b€=@3,2
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Totally symmetric self-complementary plane partitions

Flip

Definition (Mills, Robbins and Rumsey)

Let b be an element of %4,.
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Totally symmetric self-complementary plane partitions

Definition (Mills, Robbins and Rumsey)

Let b be an element of %,.

@ If bjj is a part of b off the main diagonal, then by the flip of bj
we mean the operation of replacing bj by bi} where by and bi]
are related by

bi} aF bij = min(bi_l,j, bi,j—l) aF max(biHl, bi+1’j).
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Totally symmetric self-complementary plane partitions

Definition (Mills, Robbins and Rumsey)

Let b be an element of %,.

@ If bjj is a part of b off the main diagonal, then by the flip of bj;
we mean the operation of replacing bj by bijf where b and bijf
are related by

bi} aF bij = min(bi_]_’j, bi,j—l) aF max(bi’jH, bi+1,j).

@ Similarly, the flip of a part bj; is the operation of replacing bji by

b/ where
bii + bi = bi—1i + bijt1.
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Totally symmetric self-complementary plane partitions

Definition (Mills, Robbins and Rumsey)

Let b be an element of %,.

@ If bjj is a part of b off the main diagonal, then by the flip of bj;
we mean the operation of replacing bj by bijf where b and bijf
are related by

bi} aF bij = min(bi_]_’j, bi,j—l) aF max(bi’jH, bi+1,j).
@ Similarly, the flip of a part bj is the operation of replacing b;; by
b where
b + bii = bi—1i + bijt1.
In the above expression we take boj = n for all jand bj, = n -
for all i.
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Totally symmetric self-complementary plane partitions

n =7, Flipon the off-diagonal partbys =5

T\ 7 7|7 7|7
6|16|6[5]|5
51444

41414
3|2
2
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Totally symmetric self-complementary plane partitions

n=7 5+b;,=min(7,6)+ max(5,4)
TV 717|777
6|16|6]5
51| 4 4
41414
3|2
2
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Totally symmetric self-complementary plane partitions

n=7, 5+b§,4:6+5
TV 717|777
6 [6]6]5]5
51| 4 4
41414
3|2
2
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Totally symmetric self-complementary plane partitions

n=717, Changeb2,4:5tob§’4:6.
TV 717|777
6|6 |6|6]5
51| 4 4
41414
3|2
2
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Totally symmetric self-complementary plane partitions

n =7, Flipon the diagonal partb,; =6

1
Albh|]O|N

wWlh|blO]|N
NN lOON
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Totally symmetric self-complementary plane partitions

Flips

n=7 6+by, =7+

wWlh|blO]|N
NN lOON
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Totally symmetric self-complementary plane partitions

n=7, Changeby; =6to bé,l = 7,

1
Albh|]O|N

wWlh|blO]|N
NN lOON
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Totally symmetric self-complementary plane partitions

An involution

Definition

Foreachk =1,...,n — 1, we define an operation my from %, to
itself. Let b be an element of %,. Then n(b) is the result of
flipping all the bjj1k-1,1 <i<n-Kk.
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Totally symmetric self-complementary plane partitions
An involution

Definition

Foreachk =1,...,n — 1, we define an operation my from %, to
itself. Let b be an element of %,. Then n(b) is the result of
flipping all the bjj1k-1,1 <i<n-Kk.

Example n =7,k =1, Apply m; to the following b € %;.

TV 7T 7T VT T
7166|565
51411414

414 1| 4
312
2
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Totally symmetric self-complementary plane partitions
An involution

Definition

Foreachk =1,...,n — 1, we define an operation my from %, to
itself. Let b be an element of %,. Then n(b) is the result of
flipping all the bjj1k-1,1 <i<n-Kk.

Example n =7,k =1, Then we obtain the following 71(b) € %4s.

TV 7T 7T VT T
616|]6]|5]|5
5141414

4 14| 4
312
1

Masao Ishikawa Refined Enumerations of TSSCPPs



Totally symmetric self-complementary plane partitions
An involution

Definition

Foreachk =1,...,n — 1, we define an operation my from %, to
itself. Let b be an element of %,. Then n(b) is the result of
flipping all the bjj1k-1,1 <i<n-Kk.

Example n =7,k =2, Apply m, to the following b € %;.

TV 7T\ T7T VT T
716|16]5]|5
5141141 4
41414
3|2

2

Masao Ishikawa Refined Enumerations of TSSCPPs



Totally symmetric self-complementary plane partitions
An involution

Definition

Foreachk =1,...,n — 1, we define an operation my from %, to
itself. Let b be an element of %,. Then n(b) is the result of
flipping all the bjj1k-1,1 <i<n-Kk.

Example n =7,k =2, Then we obtain the following 7»(b) € %4s.

TV 7T\ T7T V7|77
71716 ]5]|5
5151414
41414
3|3

2
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Totally symmetric self-complementary plane partitions
An involution

Definition

Foreachk =1,...,n — 1, we define an operation my from %, to
itself. Let b be an element of %,. Then n(b) is the result of
flipping all the bjj1k-1,1 <i<n-Kk.

Example n =7, k = 3, Apply 73 to the following b € %;.

TV 7T 7TV T7T|7
716|6]15]|5
514141 4
414\ 4
312

2
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Totally symmetric self-complementary plane partitions
An involution

Definition

Foreachk =1,...,n — 1, we define an operation my from %, to
itself. Let b be an element of %,. Then n(b) is the result of
flipping all the bjj1k-1,1 <i<n-Kk.

Example n =7, k = 3, Then we obtain the following 73(b) € %4s.

TV 7T 7TV T7T|7
716|5]|5]|5
5141414

41413
312
2
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Totally symmetric self-complementary plane partitions
An involution

Definition

Foreachk =1,...,n — 1, we define an operation my from %, to
itself. Let b be an element of %,. Then n(b) is the result of
flipping all the bjj1k-1,1 <i<n-Kk.

Example n =7, k =4, Apply 74 to the following b € %;.

TV 7T 7TV T7T|7
716|6]5]|5
5(4(|4] 4
41414

312

2
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Totally symmetric self-complementary plane partitions
An involution

Definition

Foreachk =1,...,n — 1, we define an operation my from %, to
itself. Let b be an element of %,. Then n(b) is the result of
flipping all the bjj1k-1,1 <i<n-Kk.

Example n =7, k =4, Then we obtain the following 74(b) € %4s.

TV 7T 7TV 7|77
716|6]6]|5
5141414

41414
312
2
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Totally symmetric self-complementary plane partitions
An involution

Definition

Foreachk =1,...,n — 1, we define an operation my from %, to
itself. Let b be an element of %,. Then n(b) is the result of
flipping all the bjj1k-1,1 <i<n-Kk.

Example n =7,k =5, Apply 75 to the following b € %;.

TV 7T 77|77
716|6]5]|5
5141414

41414
312
2
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Totally symmetric self-complementary plane partitions
An involution

Definition

Foreachk =1,...,n — 1, we define an operation my from %, to
itself. Let b be an element of %,. Then n(b) is the result of
flipping all the bjj1k-1,1 <i<n-Kk.

Example n =7,k =5, Then we obtain the following 75(b) € %4s.

TV 7T 7TV T7|7
716|6]5]|5
5141414

41414
312
2
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Totally symmetric self-complementary plane partitions
An involution

Definition

Foreachk =1,...,n — 1, we define an operation my from %, to
itself. Let b be an element of %,. Then n(b) is the result of
flipping all the bjj1k-1,1 <i<n-Kk.

Example n =7, k =6, Apply 7g to the following b € %;.

TV 7T 7TV T7T|T7|7
716|6]5]|5
5141414

41414
312
2
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Totally symmetric self-complementary plane partitions
An involution

Definition

Foreachk =1,...,n — 1, we define an operation my from %, to
itself. Let b be an element of %,. Then n(b) is the result of
flipping all the bjj1k-1,1 <i<n-Kk.

Example n =7,k =6, Then we obtain the following 7g(b) € %s.

7TV 7 (7| 7|76
716|6]5]|5
5141414
41414

312

2
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Totally symmetric self-complementary plane partitions

Conjecture 4

Definition
Define the involution p : 8, — %, by

p:ﬂ2ﬂ4ﬂ-6”'~
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Totally symmetric self-complementary plane partitions

Conjecture 4

Definition
Define the involution p : 8, — %, by

p:ﬂ2ﬂ4ﬂ-6”'~

Conjecture (Conjecture 4 of Mills, Robbins and Rumsey, “Self-complementary totally symmetric plane partitions”,

J. Combin. Theory Ser. A 42, (1986).)

Letn >2andr, 0 <r < n be integers. Then the number of
elements of %, with p(b) = b and U;(b) = r is the same as the
number of n by n alternating sign matrices a invariant under the
half turn in their own planes (that is aj = an1-jn1-i for

1 <i,j < n) and satisfying a; = 1.

Masao Ishikawa Refined Enumerations of TSSCPPs



Totally symmetric self-complementary plane partitions

Conjecture 6

Definition
Define the involution y : B, — %, by

Y = 375 -+ - .
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Totally symmetric self-complementary plane partitions

Conjecture 6

Definition
Define the involution y : B, — %, by

’)/:71'171'371'5... .

Conjecture (Conjecture 6 of Mills, Robbins and Rumsey, “Self-complementary totally symmetric plane partitions”,

J. Combin. Theory Ser. A 42, (1986).)

Letn > 3 an odd integer and i, 0 < i < n — 1 be an integer. Then
the number of b in %, with y(b) = b and U,(b) =i is the same as
the number of n by n alternating sign matrices with a;; = 1 and
which are invariant under the vertical flip (that is ajj = ajn1-j for
1<i,j<n).
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Totally symmetric self-complementary plane partitions

Restricted column-strict plane partitions

Let &, denote the set of (ordinary) plane partitions ¢ = (Cjj)1<ij
subject to the constraints that
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Totally symmetric self-complementary plane partitions

Restricted column-strict plane partitions

Let &, denote the set of (ordinary) plane partitions ¢ = (Cjj)1<ij
subject to the constraints that

(C1) cis column-strict;
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Totally symmetric self-complementary plane partitions

Restricted column-strict plane partitions

Let &, denote the set of (ordinary) plane partitions ¢ = (Cjj)1<ij
subject to the constraints that

(C1) cis column-strict;
(C2) jth column is less than or equal to n —j.
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Totally symmetric self-complementary plane partitions

Restricted column-strict plane partitions

Let &, denote the set of (ordinary) plane partitions ¢ = (Cjj)1<ij
subject to the constraints that

(C1) cis column-strict;
(C2) jth column is less than or equal to n —j.
We call an element of &7, a restricted column-strict plane partition.
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Totally symmetric self-complementary plane partitions

Restricted column-strict plane partitions

Let &, denote the set of (ordinary) plane partitions ¢ = (Cjj)1<ij
subject to the constraints that

(C1) cis column-strict;
(C2) jth column is less than or equal to n —j.

We call an element of &, a restricted column-strict plane partition.
A part c;j of ¢ is said to be saturated if ¢j = n —].
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Totally symmetric self-complementary plane partitions

Restricted column-strict plane partitions

Let &, denote the set of (ordinary) plane partitions ¢ = (Cjj)1<ij
subject to the constraints that

(C1) cis column-strict;
(C2) jth column is less than or equal to n —j.

We call an element of &, a restricted column-strict plane partition.
A part ¢jj of c is said to be saturated if cj = n —].

&, consists of the single PP 0.
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Totally symmetric self-complementary plane partitions

Restricted column-strict plane partitions

Let &, denote the set of (ordinary) plane partitions ¢ = (Cjj)1<ij
subject to the constraints that

(C1) cis column-strict;
(C2) jth column is less than or equal to n —j.

We call an element of &, a restricted column-strict plane partition.
A part ¢jj of c is said to be saturated if cj = n —].

&, consists of the following 2 PPs:

0
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Totally symmetric self-complementary plane partitions

Restricted column-strict plane partitions

Let &, denote the set of (ordinary) plane partitions ¢ = (Cjj)1<ij
subject to the constraints that

(C1) cis column-strict;
(C2) jth column is less than or equal to n —j.

We call an element of &, a restricted column-strict plane partition.
A part ¢jj of c is said to be saturated if cj = n —].

&, consists of the following 2 PPs:

0
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Totally symmetric self-complementary plane partitions

Restricted column-strict plane partitions

Let &, denote the set of (ordinary) plane partitions ¢ = (Cjj)1<ij
subject to the constraints that

(C1) cis column-strict;
(C2) jth column is less than or equal to n —j.

We call an element of &, a restricted column-strict plane partition.
A part ¢jj of c is said to be saturated if cj = n —].

P3 consists of the followng 7 PPs

0 2[1]
1
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Totally symmetric self-complementary plane partitions

Restricted column-strict plane partitions

Let &, denote the set of (ordinary) plane partitions ¢ = (Cjj)1<ij
subject to the constraints that

(C1) cis column-strict;
(C2) jth column is less than or equal to n —j.

We call an element of &, a restricted column-strict plane partition.
A part ¢jj of c is said to be saturated if cj = n —].

P3 consists of the followng 7 PPs

0 2]1]
1
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Totally symmetric self-complementary plane partitions

Another bijection

Let n be a positive integer.
Then there is a bijection from %, to &,,.
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Totally symmetric self-complementary plane partitions

Another bijection

Let n be a positive integer.
Then there is a bijection from %, to &,,.
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Totally symmetric self-complementary plane partitions

Another bijection

Let n be a positive integer.
Then there is a bijection from %, to &,,.

T2 n=3

7
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Totally symmetric self-complementary plane partitions

Another bijection

Let n be a positive integer.
Then there is a bijection from %, to &,,.

T3 n=3
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Totally symmetric self-complementary plane partitions

Another bijection

Let n be a positive integer.
Then there is a bijection from %, to &,,.

T4 n=3

min
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Totally symmetric self-complementary plane partitions

Another bijection

Let n be a positive integer.
Then there is a bijection from %, to &,,.

s n=3

] N YE

Masao Ishikawa Refined Enumerations of TSSCPPs




Totally symmetric self-complementary plane partitions
Another bijection

Theorem

Let n be a positive integer.
Then there is a bijection from %, to &,,.

Example

L
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Totally symmetric self-complementary plane partitions
Another bijection

Theorem

Let n be a positive integer.
Then there is a bijection from %, to &,,.

Example

L
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Totally symmetric self-complementary plane partitions

Composition of the bijectons

Let n be a positive integer.
Then there is a bijection ¢, from %, to Z,.
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Totally symmetric self-complementary plane partitions

Composition of the bijectons

Corollary

Let n be a positive integer.
Then there is a bijection ¢, from %, to Z,.

The case of n = 3

be®; [3[3] [3
3

N
NS
=
NS
=

cePs 0 2[1]
1
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Totally symmetric self-complementary plane partitions
The statistics in words of RCSPP

Definition
Letc = (Cj)1<ij € Pnandk =1,...,n,
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Totally symmetric self-complementary plane partitions
The statistics in words of RCSPP

Definition

Letc = (Cj)i<ij € Pnandk =1,...,n,

Let Uk(c) denote the number parts equal to k plus the number of
saturated parts less than k.
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Totally symmetric self-complementary plane partitions
The statistics in words of RCSPP

Letc = (Cj)i<ij € Pnandk =1,...,n,
Let Uk(c) denote the number parts equal to k plus the number of
saturated parts less than k.

RPIN]JW] ]| O
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Totally symmetric self-complementary plane partitions
The statistics in words of RCSPP

Letc = (Cj)i<ij € Pnandk =1,...,n,
Let Uk(c) denote the number parts equal to k plus the number of
saturated parts less than k.

n =7, c e %3, Saturated parts

RPIN]JW] ]| O
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Totally symmetric self-complementary plane partitions
The statistics in words of RCSPP

Letc = (Cj)i<ij € Pnandk =1,...,n,
Let Uk(c) denote the number parts equal to k plus the number of
saturated parts less than k.

n=7,ce Pk =1,U;(c)=3

5|15|4]12]2
414131
3122
211

1
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Totally symmetric self-complementary plane partitions
The statistics in words of RCSPP

Letc = (Cj)i<ij € Pnandk =1,...,n,
Let Uk(c) denote the number parts equal to k plus the number of
saturated parts less than k.

n=7,ce Pk =2U,c)=5

5|15|4]12]2
414131
3122
211

1
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Totally symmetric self-complementary plane partitions
The statistics in words of RCSPP

Letc = (Cj)i<ij € Pnandk =1,...,n,
Let Uk(c) denote the number parts equal to k plus the number of
saturated parts less than k.

n=7c€ Pk =3,Us(c) =3

5|15|4]12]|2
4141311
3122
211

1
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Totally symmetric self-complementary plane partitions
The statistics in words of RCSPP

Letc = (Cj)i<ij € Pnandk =1,...,n,
Let Uk(c) denote the number parts equal to k plus the number of
saturated parts less than k.

n=7,c€ Ps k =4,U4c) =4

5|15|412]2
4141311
3122
211

1
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Totally symmetric self-complementary plane partitions
The statistics in words of RCSPP

Letc = (Cj)i<ij € Pnandk =1,...,n,
Let Uk(c) denote the number parts equal to k plus the number of
saturated parts less than k.

n=7c¢€ Pk =5Us(c)=4

5|54 ]2]2
414131
3122
211

1
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Totally symmetric self-complementary plane partitions
The statistics in words of RCSPP

Letc = (Cj)i<ij € Pnandk =1,...,n,
Let Uk(c) denote the number parts equal to k plus the number of
saturated parts less than k.

n=7,c€ Pk =6,Ug(c) =3

515|1412]2
414131
3122
211

1
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Totally symmetric self-complementary plane partitions
The statistics in words of RCSPP

Letc = (Cj)i<ij € Pnandk =1,...,n,
Let Uk(c) denote the number parts equal to k plus the number of
saturated parts less than k.

n=7,ce Pk =7U;(c)=3

515|1412]2
414131
3122
211

1
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Totally symmetric self-complementary plane partitions

Relation between Uy (b) and U, (c)

Forn>1andk =1,...,n, assume that the bijection ¢, maps
beZrtoc=¢(b)e P, Then

Uk(C) =n-1- Uk(b).
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Totally symmetric self-complementary plane partitions

Relation between Uy (b) and U, (c)

Forn>1andk =1,...,n, assume that the bijection ¢, maps
beZrtoc=¢(b)e P, Then

Uk(C) =n-1- Uk(b).

n=23,beHB;
1313] [3]3] [3]3] [3]2] [3]2] [2][2] [2]2
b 3 2l a2y i 27 1
Ui(b) 2 1 0 2 1 1 0
Us(b) 2 2 1 1 0 1 0
Us(b) 2 2 1 1 0 1 0

Masao Ishikawa Refined Enumerations of TSSCPPs




Totally symmetric self-complementary plane partitions

Relation between Uy (b) and U, (c)

Forn>1andk =1,...,n, assume that the bijection ¢, maps
beZrtoc=¢(b)e P, Then

Uk(C) =n-1- Uk(b).

n=3,ce s
0 2[1]
G 1]
Uc) 0 1 2 0 1 1 2
Us(c) 0 0 1 1 2 1 2
Us(c) 0 0 1 1 2 1 2
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Totally symmetric self-complementary plane partitions
From RCSPPs to lattce paths

LetV = {(x,y) € N?: 0 <y < x} be the vertex set,
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Totally symmetric self-complementary plane partitions
From RCSPPs to lattce paths

LetV = {(x,y) € N2: 0 <y < x} be the vertex set, and direct an
edge from u to v whenever v —u = (1,-1) or (0, -1).
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Totally symmetric self-complementary plane partitions
From RCSPPs to lattce paths

Theorem

LetV = {(x,y) € N2 : 0 <y < x} be the vertex set, and direct an
edge from u to v whenever v —u = (1,-1) or (0, -1).
Letuyj=(n—j,n—j)andv; = (4 +n—-j,0)forj=1,...,n, and let
u=(ug,...,up)andv = (vq,...,Vp).
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Totally symmetric self-complementary plane partitions
From RCSPPs to lattce paths

Theorem

LetV = {(x,y) € N2 : 0 <y < x} be the vertex set, and direct an
edge from u to v whenever v —u = (1,-1) or (0, -1).
Letuyj=(n—j,n—j)andv; = (4 +n—j,0)forj=1,...,n, and let
u=(ug,...,up)andv = (v,...,vp). We claim that the c € &,
of shape A’ can be identified with n-tuples of nonintersecting
D-paths in & (u,v).
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Totally symmetric self-complementary plane partitions
From RCSPPs to lattce paths

Theorem

LetV = {(x,y) € N2 : 0 <y < x} be the vertex set, and direct an
edge from u to v whenever v —u = (1,-1) or (0, -1).
Letuyj=(n—j,n—j)andv; = (4 +n—j,0)forj=1,...,n, and let
u=(up,...,up)andv = (vi,...,vp). We claimthatthe c € &,
of shape A’ can be identified with n-tuples of nonintersecting
D-paths in & (u,v).
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Totally symmetric self-complementary plane partitions
Example of lattice paths

n=7c¢e % RCSPP

RIN|B>] O
w
=

RIN]JW]A]O
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Totally symmetric self-complementary plane partitions

Example of lattice paths

Lattice paths
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Totally symmetric self-complementary plane partitions

Weight of each edge

Let u — v be an edge in from u to v.
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Totally symmetric self-complementary plane partitions
Weight of each edge

Let u — v be an edge in from u to v.

@ We assign the weight

{HE—,’ te-xp ifj=i,

X ifj <1,

to the horizontal edge fromu = (i,j)tov = (i + 1,j — 1).
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Totally symmetric self-complementary plane partitions
Weight of each edge

Let u — v be an edge in from u to v.

@ We assign the weight

§X; ifj <1i,

{nz_jtk o ifj =i,

to the horizontal edge fromu = (i,j)tov = (i + 1,j — 1).

@ We assign the weight 1 to the vertical edge from u = (i, j) to
v ={(i,j—1).
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Totally symmetric self-complementary plane partitions

Generating function

Let n be a positive integer.
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Totally symmetric self-complementary plane partitions
Generating function

Let n be a positive integer. Let A be a partition such that £(1) < n.
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Totally symmetric self-complementary plane partitions
Generating function

Let n be a positive integer. Let A be a partition such that £(1) < n.
Then the generating function of all plane partitions ¢ € &, of
shape A’ with the weight tY(¢)x¢ is given by

Z tU(C)xC = det (eﬁ:ﬁi(tlxl, oo tmim1 Xn—i=1, Tn—an—i)) s
cePn g 1<i,j<n
shc=A"

where T; = TT¢_; t.
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Totally symmetric self-complementary plane partitions
Generating function

Let n be a positive integer. Let A be a partition such that £(1) < n.
Then the generating function of all plane partitions ¢ € &, of
shape A’ with the weight tY(¢)x¢ is given by
Z tU(C)xC = det (eg_n:j:)ri(tlxl, oo thoiciXn—iz1, Tn—an—i)) g
cen ! 1<i,j<n
she=2"
where T; = [Tp_; t.
1]

02

1

1 txg t2htax? bigXixe tbtaXiXe tittaxaXe t2t3t2x2x,

Masao Ishikawa Refined Enumerations of TSSCPPs




Totally symmetric self-complementary plane partitions

A Pfaffian expression for the refined TSSCPP con,;.

For positive integers n and N, let BY (t) = (bjj(t))osi<n-1, 0sj<n+N-1
be the n x (n 4+ N) matrix whose (i, j)th entry is

(s ifi =0,
blj(t) - {(I]_—Il) + ("_I_ill)t otherwise.
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Totally symmetric self-complementary plane partitions

A Pfaffian expression for the refined TSSCPP con,;.

For positive integers n and N, let BY (t) = (bjj(t))osi<n-1, 0sj<n+N-1
be the n x (n 4+ N) matrix whose (i, j)th entry is

(s ifi =0,
blj(t) - {(I]_—Il) + ("_I_ill)t otherwise.

Ifn=3and N = 2, then

100 0 O©
B2t)=|0 1 t 0 O
01

o

1+t t
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Totally symmetric self-complementary plane partitions

A Pfaffian expression for the refined TSSCPP con,;.

Definition
For positive integers n, let J, = (i n+1-j)1<ij<n b€ the n xn
anti-diagonal matrix.
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Totally symmetric self-complementary plane partitions

A Pfaffian expression for the refined TSSCPP con,;.

Definition
For positive integers n, let J, = (i n+1-j)1<ij<n b€ the n xn
anti-diagonal matrix.

Example
If n = 4, then
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Totally symmetric self-complementary plane partitions

A Pfaffian expression for the refined TSSCPP con,;.

For positive integers n, let S, = (Sij)1<ij<n be thenxn
skew-symmetricl matrix whose (i, )th entry is

(-1y--1 ifi <],
Sij =40 ifi =j,
(1) ifi>|.
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Totally symmetric self-complementary plane partitions

A Pfaffian expression for the refined TSSCPP con,;.

For positive integers n, let S, = (Sij)1<ij<n be thenxn
skew-symmetricl matrix whose (i, )th entry is
(-1y--1 ifi <],
Sij =40 ifi =j,
(1) ifi>].
If n = 4, then
0 1 -1 1
— -1 0 1 -1
Se=11 1 0 1
-1 1 -1 O
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Totally symmetric self-complementary plane partitions

A Pfaffian expression for the refined TSSCPP con,;.

Let n be a positive integer and let N be an even integer such that
N > n — 1. If k is an integer such that 1 < k < n, then

U o JnBN(t)
Uk (c) _ n nen
2, 1 =P (—tBnN(mn Soin )

ceZ,
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Totally symmetric self-complementary plane partitions

A Pfaffian expression for the refined TSSCPP con,;.

Ifn =3 and N = 2 then

0 0O O|O0O O 1 1+t t

0 O oO|O0 1 t 0 0

0 0O O|1 0 O 0 0
pf 0 O -1/0 1 -1 1 -1

0 -1 0 |-1 O 1 -1 1
-1 -t 0|1 -1 O 1 -1

-1-t O 0O |-1 1 -1 0 1

—t O O0O|1 -1 1 -1 0
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Totally symmetric self-complementary plane partitions

A constant term identity for the refined TSSCPP con;.

Let n be a positive integer. If k is an integer such that 1 <k <n,
then Yce, t9(©) is equal to

cTe [ (1—§)ﬁ(1+xii)i_ (Hx.)nl— =[]

1<i<j<n i=2 Xi 1<i<j<n

1- xxJ

4
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Totally symmetric self-complementary plane partitions

A constant term identity for the refined TSSCPP con;.

Let n be a positive integer. If k is an integer such that 1 <k <n,
then Yce, t9(©) is equal to

n i-2 n
Xi 1 t 1 1
i — = 1| (3 — |
x)l—[( +xi) ( +xi)1—[l—xi l_[ 1 - XiX;
1 i=2 i=1 1<i<j<n !

CTx

1<i<j<n (

Example

If n = 3, then the constant term of

o [ [ [ (R [

1
L =x0) (1= x2) (1= xa) (L — xax2) (L — xa%a) (1 — xo%3)

is equal to 2 + 3t + 2t2.
Masao Ishikawa Refined Enumerations of TSSCPPs




Totally symmetric self-complementary plane partitions

A Pfaffian expression for the doubly refined TSSCPP

enumeration

Definition
For positive integers n and N, let

BN (t,u) = (bjj(t, u))osizn-1. 0<j<n+N-1 be the n x (n + N) matrix
whose (i, j)th entry is

0, ifi =0,
bjj(t,u) = {do,-i + do,j-i-1tu ifi =1,

(II_—IZ) + Gi—i_—zl)(t +u) + (ii]_zz)tu otherwise.
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Totally symmetric self-complementary plane partitions

A Pfaffian expression for the doubly refined TSSCPP
enumeration

Ifn=3and N = 2, then

100 0 O
Bi(t)=|0 1 tu 0 O
0 0 1 t+4+u tu
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Totally symmetric self-complementary plane partitions

A Pfaffian expression for the doubly refined TSSCPP

enumeration

Let n be a positive integer and let N be an even integer such that
N > n — 1. If k is an integer such that 2 < k < n, then

On JnBN(t,u)

D, B = Pf( BNtud, S
— Dp L n n-+N

ceP,
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Totally symmetric self-complementary plane partitions

A Pfaffian expression for the doubly refined TSSCPP

enumeration

Ifn =3 and N = 2 then

0 0O 0|0 O 1 t+u tu

0 0O 0|0 1 tu 0 0

0 O O0O(1 0 O 0 0

pf 0 O 1|0 1 -1 1 -1
0 -1 0|-1 0 1 -1 1

-1 -t 0|1 -1 O 1 -1
-t-u 0 O0|-1 1 -1 0 1

—tu O 0|1 -1 1 -1 0
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Totally symmetric self-complementary plane partitions

A constant term identity for the doubly refined TSSCPP

enumeration

Let hi(t, u; x) denote the function defined by

1 ifi =0,
hi(t,u; x) = {1 + tux ifi =1,
(1+x)2(1+tx)(1+ux) ifix>2.
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Totally symmetric self-complementary plane partitions

A constant term identity for the doubly refined TSSCPP

enumeration

Let hi(t, u; x) denote the function defined by

1 ifi =0,
hi(t,u; x) = {1 + tux ifi =1,
(1+x)2(1+tx)(1+ux) ifix>2.

Let n be a positive integer. If k is an integer such that 2 <k <n,
then Yee, t9 () is equal to

\.n L 1 1
c | ] (1_%)ghi‘l(t’“;xi )= [l 1 -’

1<i<j<n i=1 I'1<i<j<n

Masao Ishikawa Refined Enumerations of TSSCPPs




Totally symmetric self-complementary plane partitions

A constant term identity for the doubly refined TSSCPP

enumeration

If n = 3, then the constant term of

(4 O S (5

1
=) (L= %2) (1= x3) (L —x0x2) (L — xa%3) (1 — xo%3)

is equal to 1 + t + tu + t2u + tu? + ut?u?.
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Totally symmetric self-complementary plane partitions

A constant term identity

Definition
Let Z, denote the set of RCSPPs ¢ € &, such that
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Totally symmetric self-complementary plane partitions

A constant term identity

Definition
Let Z, denote the set of RCSPPs ¢ € &, such that
@ c has at most k rows.
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Totally symmetric self-complementary plane partitions

A constant term identity

Let Z, denote the set of RCSPPs ¢ € &, such that
@ c has at most k rows.

Ifn =3 and k = 0, #3¢ consists of the single PP:

0.
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Totally symmetric self-complementary plane partitions

A constant term identity

Let Z, denote the set of RCSPPs ¢ € &, such that
@ c has at most k rows.

Ifn=3and k =1, 3, consists of the following 5 PPs:

o [1 [fa] [2 [2]1]
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Totally symmetric self-complementary plane partitions

A constant term identity

Let Z, denote the set of RCSPPs ¢ € &, such that
@ c has at most k rows.

Ifn =3 and k = 2, %3, consists of the followng 7 PPs

0 2]1]

1
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Totally symmetric self-complementary plane partitions

A constant term identity

Let n be a positive integer. The restriction of ¢, to Bk gives a
bijection from % to Pk.
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Totally symmetric self-complementary plane partitions

A constant term identity

Let n be a positive integer. The restriction of ¢, to Bk gives a
bijection from % to Pk.

Let n be a positive integer. f 0 <k <n-1and1<r <n, then
Seea, 1) is equal to

CTe [] (1—2—;).n (1+%)i_2(1+xii)

1<i<j<n
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Totally symmetric self-complementary plane partitions
Example of n =3

If n = 3 and k = 0, then the constant term of

G [ [ B[S

X2 X3
1
(1-x1) (1 -x2)(1-x3)
5 _y4 2 _ 3
1 x% X1 x}1 x% x13
det 1—x% xz—x}1 x%—x%
1—x3 X3 —X; X3 —X3

X (X2 = X]_) (X3 = Xl) (X3 = X2) (l = X1X2) (l = X1X3) (l = X2X3)

is equal to 1.
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Totally symmetric self-complementary plane partitions
Example of n =3

If n = 3 and k = 1, then the constant term of

G [ [ B[S

X2
1
(1-x1) (1 -x2)(1-x3)
_ 6 5 w2 _ 5
1 x%5 X1 x% x% x15
det 1—x% xz—x% x%—x25
1—x3 X3 —X{ X3 —Xg

X (X2 = X]_) (X3 = Xl) (X3 = X2) (l = X1X2) (l = X1X3) (l = X2X3)

is equal to 2 + 2t + t2.
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Totally symmetric self-complementary plane partitions
Example of n =3

If n = 3 and k = 2, then the constant term of

G [ [ B[S

X2
1
(1-x1) (1 -x2)(1-x3)
7 _y6 2 _ 5
1 x17 X1 X% x% x15
det 1—x27 xz—x%3 x%—x25
1-X3 X3—X; X3 — X3

X (X2 = X]_) (X3 = Xl) (X3 = X2) (l = X1X2) (l = X1X3) (l = X2X3)

is equal to 2 + 3t + 2t2.
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Totally symmetric self-complementary plane partitions

Twisted Bender-Knuth involution

The Bender-Knuth involution s, on tableaux which swaps the
number of k’s and (k — 1)’s, for each i.
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Totally symmetric self-complementary plane partitions

Twisted Bender-Knuth involution

Definition

If k > 2, we define a Bender-Knuth-type involution 7, on &7, which
swaps the number of k’s and (k — 1)’s while we ignore saturated
(k —1).
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Totally symmetric self-complementary plane partitions

Twisted Bender-Knuth involution

Definition

If k > 2, we define a Bender-Knuth-type involution 7, on &7, which
swaps the number of k’s and (k — 1)’s while we ignore saturated
(k —1).

Example

n =7 Apply 7, to the following ¢ € Hs.

RIN| B~ O
w
=

RPIN]W] ]| O

R R RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRERRRRREREREDRZZI_II™wR,
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Totally symmetric self-complementary plane partitions

Twisted Bender-Knuth involution

Definition
If k > 2, we define a Bender-Knuth-type involution 7, on &7, which

swaps the number of k’s and (k — 1)’s while we ignore saturated
(k —1).

Example

n =7 Apply 7, to the following ¢ € Hs.

5|15|1412]2
414131
3122
211

1

R R RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRERRRRREREREDRZZI_II™wR,
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Totally symmetric self-complementary plane partitions

Twisted Bender-Knuth involution

Definition

If k > 2, we define a Bender-Knuth-type involution 7, on &7, which
swaps the number of k’s and (k — 1)’s while we ignore saturated
(k —1).

Example

n =7 Then we obtain the following 72(c) € .

RIN] B O
w
-

RIN] WA~ O

R R RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRERRRRREREREDRZZI_II™wR,
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Totally symmetric self-complementary plane partitions

Twisted Bender-Knuth involution

Definition

If k > 2, we define a Bender-Knuth-type involution 7, on &7, which
swaps the number of k’s and (k — 1)’s while we ignore saturated
(k —1).

Example

n =7 Apply7s to the following ¢ € .

PRI O
w
[EY

R IN]W]A]| O

R R RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRERRRRREREREDRZZI_II™wR,
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Totally symmetric self-complementary plane partitions

Twisted Bender-Knuth involution

Definition
If k > 2, we define a Bender-Knuth-type involution 7, on &7, which

swaps the number of k’s and (k — 1)’s while we ignore saturated
(k —1).

Example

n =7 Then we obtain the following 73(c) € .

515]| 4 2
4141311

3 2

211

1

R R RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRERRRRREREREDRZZI_II™wR,
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Totally symmetric self-complementary plane partitions

Twisted Bender-Knuth involution

Definition

If k > 2, we define a Bender-Knuth-type involution 7, on &7, which
swaps the number of k’s and (k — 1)’s while we ignore saturated
(k —1).

Example

n =7 Apply 7, to the following ¢ € Hs.

RIN| B~ O
w
[EY

R IN]W] S]] O

R R RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRERRRRREREREDRZZI_II™wR,
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Totally symmetric self-complementary plane partitions

Twisted Bender-Knuth involution

Definition
If k > 2, we define a Bender-Knuth-type involution 7, on &7, which

swaps the number of k’s and (k — 1)’s while we ignore saturated
(k —1).

Example

n =7 Then we obtain the following 74(c) € Y.

5154122
4 311
3122
211
1

R R RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRERRRRREREREDRZZI_II™wR,
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Totally symmetric self-complementary plane partitions

Twisted Bender-Knuth involution

Definition
If k > 2, we define a Bender-Knuth-type involution 7, on &7, which

swaps the number of k’s and (k — 1)’s while we ignore saturated
(k —1).

Example

n =7 Apply7s to the following ¢ € .

RIN| B~ O
w
[EY

R IN]W] A~ O

R R RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRERRRRREREREDRZZI_II™wR,
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Totally symmetric self-complementary plane partitions

Twisted Bender-Knuth involution

Definition

If k > 2, we define a Bender-Knuth-type involution 7, on &7, which
swaps the number of k’s and (k — 1)’s while we ignore saturated
(k —1).

Example

n =7 Then we obtain the following 7s(c) € Y.

RIN| B~ O
w
[EY

R IN]W] A~ O

R R RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRERRRRREREREDRZZI_II™wR,

Masao Ishikawa Refined Enumerations of TSSCPPs




Totally symmetric self-complementary plane partitions

Twisted Bender-Knuth involution

Definition
If k > 2, we define a Bender-Knuth-type involution 7, on &7, which

swaps the number of k’s and (k — 1)’s while we ignore saturated
(k —1).

Example

n =7 Apply 7 to the following ¢ € Hs.

RIN|B~]|O
w
[EY

R IN]JW] S| O

R R RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRERRRRREREREDRZZI_II™wR,
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Totally symmetric self-complementary plane partitions

Twisted Bender-Knuth involution

Definition

If k > 2, we define a Bender-Knuth-type involution 7, on &7, which
swaps the number of k’s and (k — 1)’s while we ignore saturated
(k —1).

Example

n =7 Then we obtain the following 7s(c) € .

514|2] 2
4141311
3|12]2

211

1

R R RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRERRRRREREREDRZZI_II™wR,
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Totally symmetric self-complementary plane partitions

Twisted Bender-Knuth involution

Definition

Letc € &,. Set 4; to be the number of parts > 2 in the ith row of c.
We set 19 = n — 1 by convention. Let k;j denote the number of 1's
in the ith row. Let 7; be the involution on &2, that changes the
number of 1's in the ith row from k;j to 4i_1 — 4; — k;.
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Totally symmetric self-complementary plane partitions

Twisted Bender-Knuth involution

Definition

Letc € &,. Set 4; to be the number of parts > 2 in the ith row of c.
We set 19 = n — 1 by convention. Let k;j denote the number of 1's
in the ith row. Let 7; be the involution on &2, that changes the
number of 1's in the ith row from k;j to 4i_1 — 4; — k;.

Example

n =7 Applym; to the following ¢ € 4.

5|15|412]2
414131
3122
211

1
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Totally symmetric self-complementary plane partitions

Twisted Bender-Knuth involution

Definition

Letc € &,. Set 4; to be the number of parts > 2 in the ith row of c.
We set 19 = n — 1 by convention. Let k;j denote the number of 1's
in the ith row. Let 7; be the involution on &2, that changes the
number of 1's in the ith row from k;j to 4i_1 — 4; — k;.

n =7 Then we obtain the following 71(c) € Z.

515(4]12]2
41413
312]| 2
2
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Totally symmetric self-complementary plane partitions
Flips in words of RCSPP

Let n be a positive integerand letk = 1,...,n—1. Ifb € %4,, then
we have

7k (¢n (0)) = ¢@n (7 (b))
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Totally symmetric self-complementary plane partitions
Flips in words of RCSPP

Let n be a positive integerand letk = 1,...,n—1. Ifb € %4,, then
we have

7k (¢n (0)) = ¢@n (7 (b))

We define involutions on &,

and we put 5%,5 (resp. @Z) the set of elements &7, invariant under
o (resp. y).
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Totally symmetric self-complementary plane partitions

Invariants under p

P7 = (0}
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Totally symmetric self-complementary plane partitions

Invariants under p

74 = 0. [1])
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Totally symmetric self-complementary plane partitions
Invariants under p

ﬁg is composed of the following 3 RCSPPs:

0 2[1]
1
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Totally symmetric self-complementary plane partitions
Invariants under p

ﬁf:’ is composed of the following 10 elements:
0 2|2
11
2[2]1] 3]2 3]2]1]
1]1 2[1 2[1
1) 1)
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Totally symmetric self-complementary plane partitions

Invariants under p

ﬁg has 25 elements, and @65 has 140 elements.
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Totally symmetric self-complementary plane partitions

Invariants under y

Proposition
If c € &2, is invariant under 7y, then n must be an odd integer.
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Totally symmetric self-complementary plane partitions
Invariants under y

Proposition

If c € &2, is invariant under 7y, then n must be an odd integer.

Thus we have L@Z = {}
@Z is composed of the following 3 RCSPPs:

3|2]1]

=
NN
N

and @57 has 26 elements.
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Totally symmetric self-complementary plane partitions

Invariants under y

If c € Y5514 is invariant under y, then ¢ has no saturated parts.
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Totally symmetric self-complementary plane partitions
Invariants under y

If c € 5,14 is invariant under y, then ¢ has no saturated parts.

Example
The following ¢ € &1, is invariant under 7:

C=l7]|7]16|[6]|3]|2|1]1
515]14]13]|1
413122
111
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Totally symmetric self-complementary plane partitions
Invariants under y

If c € 5,14 is invariant under y, then ¢ has no saturated parts.

Example

Remove all 1's from ¢ € ,@171.

cC=l7]|7]16|[6]|3]|2|1]1
51514 ]13]|1
413122

1)1
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Totally symmetric self-complementary plane partitions
Invariants under y

If c € 5,14 is invariant under y, then ¢ has no saturated parts.

Example
Then we obtain a PP in which each row has even length.
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Totally symmetric self-complementary plane partitions
Invariants under y

If c € 5,14 is invariant under y, then ¢ has no saturated parts.

Example
Identify 3 and 2, 5 and 4, 7 and 6.
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Totally symmetric self-complementary plane partitions
Invariants under y

If c € 5,14 is invariant under y, then ¢ has no saturated parts.

Example

Repace 3 and 2 by dominos containing 1, 5 and 4 by dominos con-
taining 2, 7/ and © by dominos containing 3.

d= 1
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Totally symmetric self-complementary plane partitions

Domino plane partitions

Let n be a positive integer. Let 27 denote the set of column-strict
domino plane partitions d such that
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Totally symmetric self-complementary plane partitions

Domino plane partitions

Let n be a positive integer. Let 27 denote the set of column-strict
domino plane partitions d such that

© The jth column does not exceed [(n —j)/2],

Masao Ishikawa Refined Enumerations of TSSCPPs



Totally symmetric self-complementary plane partitions

Domino plane partitions

Let n be a positive integer. Let 27 denote the set of column-strict
domino plane partitions d such that

© The jth column does not exceed [(n —j)/2],
© Each row of d has even length.
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Totally symmetric self-complementary plane partitions

Domino plane partitions

Let n be a positive integer. Let 27 denote the set of column-strict
domino plane partitions d such that

© The jth column does not exceed [(n —j)/2],
© Each row of d has even length.
Let Uy (d) denote the number of 1’s in d € ZR.
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Totally symmetric self-complementary plane partitions

Domino plane partitions

Let n be a positive integer. Let 27 denote the set of column-strict
domino plane partitions d such that

© The jth column does not exceed [(n —j)/2],
© Each row of d has even length.
Let U, (d) denote the number of 1'sin d € ZR.

Example
IR = IR = {0).
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Totally symmetric self-complementary plane partitions

Domino plane partitions

Let n be a positive integer. Let 27 denote the set of column-strict
domino plane partitions d such that

© The jth column does not exceed [(n —j)/2],
© Each row of d has even length.
Let U, (d) denote the number of 1'sin d € ZR.

Example

@5 is composed of the following 3 elements:

0 ) e
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Totally symmetric self-complementary plane partitions

Domino plane partitions

Let n be a positive integer. Let 27 denote the set of column-strict
domino plane partitions d such that

© The jth column does not exceed [(n —j)/2],
© Each row of d has even length.
Let U, (d) denote the number of 1'sin d € ZR.

Example

@f is composed of the following 4 elements:

0. [1], 1)1 2|1

>

8 has 26 elements, g has 50 elements, and 2% has 646 ele-
ments.
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Totally symmetric self-complementary plane partitions

A determinantal formula for Conjecture 6

Let n be a positive integer.
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Totally symmetric self-complementary plane partitions

A determinantal formula for Conjecture 6

Let n be a positive integer. Then there is a bijection 75,1 from

Y R
Py 10 Doy
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Totally symmetric self-complementary plane partitions

A determinantal formula for Conjecture 6

Let n be a positive integer. Then there is a bijection 75,1 from

Py 10 DR, suchthat Us(tanga(c)) = Uz(c) forc € 275 .
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Totally symmetric self-complementary plane partitions

A determinantal formula for Conjecture 6

Let n be a positive integer. Then there is a bijection 75,1 from

Py 10 IR, suchthat Us(tanga(c)) = Uz(c) forc € 27 .

Let n > 2 be a positive integer.
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Totally symmetric self-complementary plane partitions

A determinantal formula for Conjecture 6

Let n be a positive integer. Then there is a bijection 75,1 from

Py 10 IR, suchthat Us(tanga(c)) = Uz(c) forc € 27 .

| \

Theorem
Letn > 2 be a positive integer. Let R7(t) = (R )o<ij<n-1 be the
n X n matrix where

i1j-1 i+j-1\ [i+j-1 -1\,
RC = t t
L ( 2i - | )+{(2i—1—1)+(2i—j+1)} +( 2i -] )

with the convention that Rg,o = qul = i
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Totally symmetric self-complementary plane partitions

A determinantal formula for Conjecture 6

Let n be a positive integer. Then there is a bijection 75,1 from

Py 10 IR, suchthat Us(tanga(c)) = Uz(c) forc € 27 .

Theorem
Let n > 2 be a positive integer. Let R3(t) = (Ri"j)ogi,jsn_l be the
n X n matrix where

i+j-1 i+j-1 i+j-1 ij—d1} 5
RS = t t
g ( 20 - )+{(2i—1—1)+(2i—j+1)} +( 2i -] )

with the convention that Rg,o = Rg,l =i
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Totally symmetric self-complementary plane partitions

A determinantal formula for Conjecture 6

Let n be a positive integer. Then there is a bijection 75,1 from

Py 10 IR, suchthat Us(tanga(c)) = Uz(c) forc € 27 .

Theorem
Let n > 2 be a positive integer. Let R3(t) = (Ri"j)ogi,jsn_l be the
n X n matrix where

i+j-1 i+j-1 i+j-1 ij—d1} 5
RS = t t
g ( 20 - )+{(2i—1—1)+(2i—j+1)} +( 2i -] )

with the convention that Rgo = Rgl = 1. Then we obtain

> 190 = detR2(1).

apY
ce/zh+1
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Totally symmetric self-complementary plane partitions
The determinants

ifn=2then} _,» tV2(¢) s given by
=G

11
det( 0 14t+t2 )

which is equal to 1 + t + t2.
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Totally symmetric self-complementary plane partitions
The determinants

ifn=3,then ¥ _» tV2(¢) s given by
<7

1 1 0
det|] 0 1+t+t>2 1+42t+t?
0 t 3+ 4t + 3t?

which is equal to 3 + 6t + 8t + 6t° + 3t*,
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Totally symmetric self-complementary plane partitions
The determinants

ifn=4,then _» tV2(¢) s given by
<7

1 1 0 0
e 0 1+t+4+t2 1+4+2t+t? t

0 t 344t +3t2 44 Tt + 42

0 0 1+4t+1t%> 10+ 15t + 10t?

which is equal to 26 + 78t + 138t% + 162t3 + 138t* + 78t° + 26t°.
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Totally symmetric self-complementary plane partitions
Determinant evaluation

Theorem (Andrews-Burge)

Let . .
Mn(X,Y) = det((' i —f—.x) + (' i Jr.y)) :
2i —j 2i -] 0<i,jsn-1

n-1
Ma(.y) = [ [ Bak(x +).
k=0

Then

where Ap(u) = 2 and forj > 0

_ (u+2i+2)(3u+2 + §)ia
()i(3u+i+ 2

2jlu

Masao Ishikawa Refined Enumerations of TSSCPPs



Totally symmetric self-complementary plane partitions

A weak version of Conjecture 6

Let n be a positive integer.
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Totally symmetric self-complementary plane partitions

A weak version of Conjecture 6

Let n be a positive integer. Then

1 % (6k —2)!(2k —1)!
[

detRn(1) = 55 (4k — 2)1(4k — 1)!"

k=1
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Totally symmetric self-complementary plane partitions

A weak version of Conjecture 6

Theorem
Let n be a positive integer. Then

or 1 1 (6k —2)1(2k - 1)!
S [ (4k —2)!(4k = 1)!"

k=1

This proves tha the number of b € %511 invariant under y is
equal to the number of vertically symmetric alternating sign
matrices of size 2n + 1.
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Totally symmetric self-complementary plane partitions

The end

Thank you!

Masao Ishikawa
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