Euler-Mahonian Statistics of Ordered Partitions

Transfer matrix method and determinant evaluation

Masao Ishikawa

ishikawa@fed.tottori-u.ac.jp

Department of Mathematics
Tottori University
Koyama, Tottori 680-8550, Japan

\(^a\)joint work with Anisse Kasraoui and Jiang Zeng
An ordered partition of a set S into k blocks is a sequence $B_1 - B_2 - \cdots - B_k$ such that:

$\spadesuit B_i \neq \emptyset, \quad 1 \leq i \leq k$;
An ordered partition of a set S into k blocks is a sequence $B_1 - B_2 - \cdots - B_k$ such that:

♠ $B_i \neq \emptyset$, $1 \leq i \leq k$;
♠ $B_i \cap B_j = \emptyset$, $1 \leq i, j \leq k$;
An ordered partition of a set S into k blocks is a sequence $B_1 - B_2 - \cdots - B_k$ such that:

- $B_i \neq \emptyset$, $1 \leq i \leq k$;
- $B_i \cap B_j = \emptyset$, $1 \leq i, j \leq k$;
- $\bigcup_{i=1}^{k} B_i = S$.

Ordered Partitions
An ordered partition of a set S into k blocks is a sequence $B_1 - B_2 - \cdots - B_k$ such that:

1. $B_i \neq \emptyset$, $1 \leq i \leq k$;
2. $B_i \cap B_j = \emptyset$, $1 \leq i, j \leq k$;
3. $\bigcup_{i=1}^{k} B_i = S$.

Set $[n] := \{1, \ldots, n\}$.

An ordered partition of a set S into k blocks is a sequence $B_1 - B_2 - \cdots - B_k$ such that:

- $B_i \neq \emptyset$, $1 \leq i \leq k$;
- $B_i \cap B_j = \emptyset$, $1 \leq i, j \leq k$;
- $\bigcup_{i=1}^{k} B_i = S$.

Set $[n] := \{1, \ldots, n\}$.

$$\pi = \{2, 9\} - \{3\} - \{1, 4, 8\} - \{5, 6\} - \{7\}$$

is an ordered partition of $[9]$ with 5 blocks.
The Stirling number $S(n, k)$ of the second kind satisfy:
The Stirling number $S(n, k)$ of the second kind satisfy:

$$S(n, k) = S(n - 1, k - 1) + k S(n - 1, k).$$
The Stirling number $S(n, k)$ of the second kind satisfy:

$$S(n, k) = S(n - 1, k - 1) + k S(n - 1, k).$$

The Stirling number $S(n, k)$ of the 2nd kind counts the number of (unordered) partitions of $[n]$ into k blocks.
The Stirling number $S(n, k)$ of the second kind satisfy:

$$S(n, k) = S(n - 1, k - 1) + k S(n - 1, k).$$

The Stirling number $S(n, k)$ of the 2nd kind counts the number of (unordered) partitions of $\lfloor n \rfloor$ into k blocks.

Definition

$\mathcal{OP}_{n}^{k} := \{\text{ordered partitions of } \lfloor n \rfloor \text{ with } k \text{ blocks}\}$.

The Stirling number $S(n, k)$ of the second kind satisfy:

$$S(n, k) = S(n - 1, k - 1) + k \cdot S(n - 1, k).$$

The Stirling number $S(n, k)$ of the 2nd kind counts the number of (unordered) partitions of $[n]$ into k blocks.

$$\text{cardinal}(\mathcal{OP}_n^k) = k! \cdot S(n, k).$$
q-Stirling numbers

q-integers and q-factorials

\[[n]_q = 1 + q + q^2 + \cdots + q^{n-1}, \]
q-Stirling numbers

q-integers and q-factorials

\[[n]_q = 1 + q + q^2 + \cdots + q^{n-1}, \]
\[[n]_q! = [n]_q[n - 1]_q \cdots [1]_q. \]
The *q*-Stirling number $S_q(n, k)$ of the second kind satisfy:

$$S_q(n, k) = q^{k-1}S_q(n - 1, k - 1) + [k]_qS_q(n - 1, k).$$

where $S_q(n, k) = \delta_{n,k}$ if $n = 0$ or $k = 0$. (Carlitz)
The first few values of the q-Stirling numbers $S_q(n, k)$ read
Table

The first few values of the q-Stirling numbers $S_q(n, k)$ read

<table>
<thead>
<tr>
<th>$n \setminus k$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>q</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>$2q + 2q^2$</td>
<td>q^3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>$3q + 5q^2 + 3q^3$</td>
<td>$3q^3 + 5q^4 + 3q^5$</td>
<td>q^6</td>
</tr>
</tbody>
</table>
Definition 1 (Steingrímsson) A statistic $STAT$ on ordered partitions is said Euler-Mahonian if
Definition 1 (Steingrímsson) A statistic $STAT$ on ordered partitions is said Euler-Mahonian if

$$\sum_{\pi \in OP_n^k} q^{STAT} \pi = [k]_q! S_q(n, k).$$
Definition 1 (Steingrímsson) A statistic $STAT$ on ordered partitions is said Euler-Mahonian if

$$\sum_{\pi \in OP_n^k} q^{STAT} \pi = [k]_q! S_q(n, k).$$

Steingrímsson:

Find Euler-Mahonian statistics on ordered partitions.
Steingrímsson defines a system of statistics:

\texttt{ros, rob, rcs, rcb, lob, los, lcs, lcb, lsb, rsb, bInv, inv, cinv.}
Steingrímsson’s Conjecture

Steingrímsson defines a system of statistics:

\[\text{ros, rob, rcs, rcb, lob, los, lcs, lcb, lsb, rsb, bInv, inv, cinv}. \]

Conjecture 2 (Steingrímsson, 1997)

The following combinations of \(\text{SYSTEM} \)

\[\text{mak} + \text{bInv}, \quad \text{lmak}' + \text{bInv}, \quad \text{cinvLSB}, \]
\[\text{mak}' + \text{bInv}, \quad \text{lmak} + \text{bInv}, \]

are Euler-mahonian on \(\mathcal{OP} \).
Given an ordered partition π in \mathcal{OP}_n^k, each entry of π is divided into four classes:

- **singleton**: an entry of a singleton block;
Given an ordered partition π in \mathcal{OP}_n^k, each entry of π is divided into four classes:

- **singleton**: an entry of a singleton block;
- **opener**: the smallest entry of a non-singleton block;
Singleton, Opener, Closer, Transient

Given an ordered partition π in \mathcal{OP}_n^k, each entry of π is divided into four classes:

- **singleton**: an entry of a singleton block;
- **opener**: the smallest entry of a non-singleton block;
- **closer**: the largest entry of a non-singleton block;
Singleton, Opener, Closer, Transient

Given an ordered partition π in \mathcal{OP}_n^k, each entry of π is divided into four classes:

- ★ singleton: an entry of a singleton block;
- ★ opener: the smallest entry of a non-singleton block;
- ★ closer: the largest entry of a non-singleton block;
- ★ transient: none of the above.
Given an ordered partition π in \mathcal{OP}_n^k, each entry of π is divided into four classes:

- **singleton**: an entry of a singleton block;
- **opener**: the smallest entry of a non-singleton block;
- **closer**: the largest entry of a non-singleton block;
- **transient**: none of the above.

The above sets are denoted by $\mathcal{O}(\pi)$, $\mathcal{C}(\pi)$, $\mathcal{S}(\pi)$ and $\mathcal{T}(\pi)$, respectively.
Example

We can classify each entry of an ordered partition into four categories. If
\[\pi = \{3\ 5\} - \{2\ 4\ 6\} - \{1\} - \{7\ 8\}, \]

- **singletons**: 1.
Example

We can classify each entry of an ordered partition into four categories.
if $\pi = \{3, 5\} - \{2, 4, 6\} - \{1\} - \{7, 8\}$,

★ singletons: 1.

★ openers: 2, 3, 7.
Example

We can classify each entry of an ordered partition into four categories. if \(\pi = \{3\ 5\} - \{2\ 4\ 6\} - \{1\} - \{7\ 8\} \),

★ singletons: 1.
★ openers: 2,3,7.
★ closers: 5,6,8.
We can classify each entry of an ordered partition into four categories.
if $\pi = \{3, 5\} - \{2, 4, 6\} - \{1\} - \{7, 8\}$,

- **singletons**: 1.
- **openers**: 2, 3, 7.
- **closers**: 5, 6, 8.
- **transients**: 4.
We can classify each entry of an ordered partition into four categories.
if $\pi = \{3 5\} - \{2 4 6\} - \{1\} - \{7 8\}$,

- **singletons:** 1.
- **openers:** $2, 3, 7$.
- **closers:** $5, 6, 8$.
- **transients:** 4.

$S(\pi) = \{1\}$, $O(\pi) = \{2, 3, 7\}$, $C(\pi) = \{5, 6, 8\}$, $T(\pi) = \{4\}$.
Let w_i denote the block index containing i, namely the integer j such that $i \in B_j$.
Let \(w_i \) denote the block index containing \(i \), namely the integer \(j \) such that \(i \in B_j \).

\[
\text{ros}_i(\pi) = \#\{ j \in (\mathcal{O} \cup \mathcal{S})(\pi) \mid i > j, w_j > w_i \},
\]

where \((\mathcal{O} \cup \mathcal{S})(\pi) = \mathcal{O}(\pi) \cup \mathcal{S}(\pi) \).
Let w_i denote the block index containing i, namely the integer j such that $i \in B_j$. Then

$$\text{ros}_i(\pi) = \# \{ j \in (O \cup S)(\pi) \mid i > j, w_j > w_i \},$$

where $(O \cup S)(\pi) = O(\pi) \cup S(\pi)$.

$$\pi = 6 \ 8 \ - \ 5 \ - \ 1 \ 4 \ 7 \ - \ 3 \ 9 \ - \ 2$$

$$\text{ros}_i : \quad / \quad / \quad / \quad / \quad / \quad /$$
Let \(w_i \) denote the block index containing \(i \), namely the integer \(j \) such that \(i \in B_j \).

\[
\text{ros}_i(\pi) = \# \{ j \in (O \cup S)(\pi) \mid i > j, w_j > w_i \},
\]

where \((O \cup S)(\pi) = O(\pi) \cup S(\pi)\).

\[
\pi = 6 \quad 8 \quad 5 \quad 1 \quad 4 \quad 7 \quad 3 \quad 9 \quad 2
\]

\[
\text{ros}_i : \quad 4 \quad / \quad /
\]
Let w_i denote the block index containing i, namely the integer j such that $i \in B_j$.

Let π be a permutation defined as follows:

$$
\pi = 6 \ 8 \ -5 \ -1 \ 4 \ 7 \ -3 \ 9 \ -2
$$

The rosi statistic is given by:

$$
ros_i(\pi) = \#\{j \in (O \cup S)(\pi) \mid i > j, w_j > w_i\},
$$

where $(O \cup S)(\pi) = O(\pi) \cup S(\pi)$.

For $\pi = 6 \ 8 \ -5 \ -1 \ 4 \ 7 \ -3 \ 9 \ -2$, we have $ros_i : 4 \ 4$.
Let w_i denote the block index containing i, namely the integer j such that $i \in B_j$. Then,
\[
\text{ros}(i) = \# \{ j \in (\mathcal{O} \cup \mathcal{S})(\pi) \mid i > j, w_j > w_i \},
\]
where $(\mathcal{O} \cup \mathcal{S})(\pi) = \mathcal{O}(\pi) \cup \mathcal{S}(\pi)$.

\[
\pi = 6 \quad 8 \quad - \quad 5 \quad - \quad 1 \quad 4 \quad 7 \quad - \quad 3 \quad 9 \quad - \quad 2
\]

\[
\text{ros}_i : 4 \quad 4 \quad / \quad 3 \quad / \quad / \quad / \quad /
\]
Let w_i denote the block index containing i, namely the integer j such that $i \in B_j$.

$$\text{ros}_i(\pi) = \#\{j \in (O \cup S)(\pi) \mid i > j, w_j > w_i\},$$

where $(O \cup S)(\pi) = O(\pi) \cup S(\pi)$.

$$\pi = 6 \ 8 \ - \ 5 \ - \ 1 \ 4 \ 7 \ - \ 3 \ 9 \ - \ 2$$

$$\text{ros}_i : 4 \ 4 \ / \ 3 \ / \ 0 \ / \ /$$
Let w_i denote the block index containing i, namely the integer j such that $i \in B_j$.

$$\text{ros}_i(\pi) = \# \{ j \in (O \cup S)(\pi) \mid i > j, w_j > w_i \},$$

where $(O \cup S)(\pi) = O(\pi) \cup S(\pi)$.

$$\pi = 6 \ 8 - 5 - 1 \ 4 \ 7 - 3 \ 9 - 2$$

$$\text{ros}_i: \ 4 \ 4 / 3 / 0 \ 2 / \ / \ /$$
Let w_i denote the block index containing i, namely the integer j such that $i \in B_j$.

$$\text{ros}_i(\pi) = \# \{ j \in (\mathcal{O} \cup \mathcal{S})(\pi) \mid i > j, w_j > w_i \},$$

where $(\mathcal{O} \cup \mathcal{S})(\pi) = \mathcal{O}(\pi) \cup \mathcal{S}(\pi)$.

$\pi = 6 \ 8 \ - \ 5 \ - \ 1 \ 4 \ 7 \ - \ 3 \ 9 \ - \ 2$

$\text{ros}_i : 4 \ 4 / 3 / 0 \ 2 \ 2 / /$
Let w_i denote the block index containing i, namely the integer j such that $i \in B_j$. Then,

$$\text{ros}_i(\pi) = \# \{ j \in (O \cup S)(\pi) \mid i > j, w_j > w_i \},$$

where $(O \cup S)(\pi) = O(\pi) \cup S(\pi)$.

\[\pi = 6 8 - 5 - 1 4 7 - 3 9 - 2\]

\[\text{ros}_i : 4 4 / 3 / 0 2 2 / 1 / \]
Let w_i denote the block index containing i, namely the integer j such that $i \in B_j$.

\[
\text{ros}_i(\pi) = \# \{ j \in (\mathcal{O} \cup \mathcal{S})(\pi) | i > j, w_j > w_i \},
\]

where $(\mathcal{O} \cup \mathcal{S})(\pi) = \mathcal{O}(\pi) \cup \mathcal{S}(\pi)$.

\[
\pi = 6 8 - 5 - 1 4 7 - 3 9 - 2
\]

\[
\text{ros}_i : \ 4 4 / 3 / 0 2 2 / 1 1 / \]
Let w_i denote the block index containing i, namely the integer j such that $i \in B_j$.

\[
\mathrm{ros}_i(\pi) = \# \{ j \in (\mathcal{O} \cup \mathcal{S})(\pi) \mid i > j, w_j > w_i \},
\]
where $(\mathcal{O} \cup \mathcal{S})(\pi) = \mathcal{O}(\pi) \cup \mathcal{S}(\pi)$.

\[
\pi = 6 \ 8 \ - \ 5 \ - \ 1 \ 4 \ 7 \ - \ 3 \ 9 \ - \ 2 \\
\mathrm{ros}_i: \quad 4 \ 4 \ / \ 3 \ / \ 0 \ 2 \ 2 \ / \ 1 \ 1 \ / \ 0
\]
Let \(w_i \) denote the block index containing \(i \), namely the integer \(j \) such that \(i \in B_j \).

\[
\text{ros}(\pi) = \# \{ j \in (O \cup S)(\pi) \mid i > j, w_j > w_i \},
\]

where \((O \cup S)(\pi) = O(\pi) \cup S(\pi)\).

\[
\pi = 6 \quad 8 \quad - \quad 5 \quad - \quad 1 \quad 4 \quad 7 \quad - \quad 3 \quad 9 \quad - \quad 2
\]

\[
\text{ros}_3 : \begin{array}{c}
4 \quad 4 \\
/ \quad 3 \\
/ \quad 0 \quad 2 \quad 2 \\
/ \quad 1 \quad 1 \\
/ \quad 0
\end{array}
\]

\[
\text{ros}(\pi) = 17
\]
rob (right-opener-big)

\[\text{rob}_i(\pi) = \# \{ j \in (O \cup S)(\pi) \mid i < j, w_j > w_i \}, \]

where \((O \cup S)(\pi) = O(\pi) \cup S(\pi)\).

\[\pi = 68 - 5 - 147 - 39 - 2 \]

\[\text{rob}_i : \quad 00 / 0 / 200 / 00 / 0 \]

\[\text{rob}(\pi) = 2 \]
rcs (right-closer-small)

$$rcs_i(\pi) = \# \{ j \in (C \cup S)(\pi) | i > j, w_j > w_i \},$$

where $$(C \cup S)(\pi) = C(\pi) \cup S(\pi).$$

$$\pi = \begin{array}{cccccc}
6 & 8 & - & 5 & - & 1 4 7 & - & 3 9 & - & 2 \\
\end{array}$$

$$rcs_i: \begin{array}{cccccc}
2 & 3 & / & 1 & / & 0 1 1 & / & 1 1 & / & 0 \\
\end{array}$$

$$rcs(\pi) = 10$$
rcb (right-closer-big)

\[
rcb_i(\pi) = \# \{ j \in (C \cup S)(\pi) \mid i < j, w_j > w_i \},
\]

where \((C \cup S)(\pi) = C(\pi) \cup S(\pi)\).

\[
\pi = 6 8 \quad 5 \quad 1 4 7 \quad 3 9 \quad 2 \\
rcb_i : \quad 2 1 \quad / \quad 2 \quad / \quad 2 1 1 \quad / \quad 0 0 \quad / \quad 0 \\
rcb(\pi) = 9
\]
los (left-opener-small)

\[\text{los}_i(\pi) = \# \{ j \in (\mathcal{O} \cup \mathcal{S})(\pi) \mid i > j, w_j < w_i \}, \]

where \((\mathcal{O} \cup \mathcal{S})(\pi) = \mathcal{O}(\pi) \cup \mathcal{S}(\pi)\).

\[\pi = \begin{array}{ccccccc}
6 & 8 & - & 5 & - & 1 & 4 & 7 & - & 3 & 9 & - & 2 \\
\end{array} \\
\text{los}_i : \begin{array}{ccccccc}
0 & 0 & / & 0 & / & 0 & 0 & 2 & / & 1 & 3 & / & 1 \\
\end{array} \\
\text{los}(\pi) = 7 \]
Other Statistics

lob (left-opener-big)

\[
\text{lob}_i(\pi) = \#\{ j \in (\mathcal{O} \cup S)(\pi) \mid i < j, w_j < w_i \},
\]

where \((\mathcal{O} \cup S)(\pi) = \mathcal{O}(\pi) \cup S(\pi)\).

\[
\pi = \begin{array}{ccccccc}
6 & 8 & - & 5 & - & 1 & 4 & 7 & - & 3 & 9 & - & 2 \\
\end{array}
\]

\[
\text{lob}_i : \begin{array}{ccccccc}
0 & 0 & / & 1 & / & 2 & 2 & 0 & / & 2 & 0 & / & 3 \\
\end{array}
\]

\[
\text{lob}(\pi) = 10
\]
Other Statistics

lcs (left-closer-small)

\[\text{lcs}_i(\pi) = \# \{ j \in (C \cup S)(\pi) | i > j, w_j < w_i \}, \]

where \((C \cup S)(\pi) = C(\pi) \cup S(\pi)\).

\[\pi = 6 \ 8 \ - \ 5 \ - \ 1 \ 4 \ 7 \ - \ 3 \ 9 \ - \ 2 \]

\[\text{lcs}_i : \ 0 \ 0 \ / \ 0 \ / \ 0 \ 0 \ 1 \ / \ 0 \ 3 \ / \ 0 \]

\[\text{lcs}(\pi) = 4 \]
lcb (left-closer-big)

\[lcb_i(\pi) = \# \{ j \in (C \cup S)(\pi) \mid i < j, w_j < w_i \}, \]

where \((C \cup S)(\pi) = C(\pi) \cup S(\pi)\).

\[\pi = 6 \ 8 \ - \ 5 \ - \ 1 \ 4 \ 7 \ - \ 3 \ 9 \ - \ 2 \]

\[lcb_i : \quad 0 \ 0 \ / \ 1 \ / \ 2 \ 2 \ 1 \ / \ 3 \ 0 \ / \ 4 \]

\[lcb(\pi) = 13 \]
\(\text{rsb}_i(\pi) \) is the number of blocks \(B \) in \(\pi \) to the right of the block containing \(i \) such that the opener of \(B \) is smaller than \(i \) and the closer of \(B \) is greater than \(i \).

\[
\pi = 6 \quad 8 \quad - \quad 5 \quad - \quad 147 \quad - \quad 39 \quad - \quad 2
\]

\(\text{rsb}_i : \quad / \quad / \quad / \quad / \quad / \quad / \)
rsb (right-small-big)

\(\text{rsb}_i(\pi) \) is the number of blocks B in \(\pi \) to the right of the block containing \(i \) such that the opener of B is smaller than \(i \) and the closer of B is greater than \(i \).

\[
\pi = 6 \ 8 \ - \ 5 \ - \ 1 \ 4 \ 7 \ - \ 3 \ 9 \ - \ 2
\]

\[
\text{rsb}_i : 2 \ / \ / \ / \ / \ / \ /
\]
rsb (right-small-big)

\(rsb_i(\pi) \) is the number of blocks \(B \) in \(\pi \) to the right of the block containing \(i \) such that the opener of \(B \) is smaller than \(i \) and the closer of \(B \) is greater than \(i \).

\[\pi = 6 \ 8 \ - \ 5 \ - \ 1 \ 4 \ 7 \ - \ 3 \ 9 \ - \ 2 \]

\(rsb_i : \quad 2 \ 1 \ / \ / \ / \ / \ / \ / \ / \)
\(\text{rsb\, (right-small-big)} \)

\[\text{rsb}_i(\pi) \] is the number of blocks \(B \) in \(\pi \) to the right of the block containing \(i \) such that the opener of \(B \) is smaller than \(i \) and the closer of \(B \) is greater than \(i \).

\[\pi = 6 \; 8 \; - \; 5 \; - \; 1 \; 4 \; 7 \; - \; 3 \; 9 \; - \; 2 \]

\[\text{rsb}_i \,: \; 2 \; 1 \; / \; 2 \; / \; / \; / \; / \]
rsb (right-small-big)

rsb\(_i(\pi)\) is the number of blocks B in \(\pi\) to the right of the block containing \(i\) such that the opener of B is smaller than \(i\) and the closer of B is greater than \(i\).

\[
\pi = 68 - 5 - 147 - 39 - 2
\]

rsb\(_i\): 2 1 / 2 / 0 / / /
rsb (right-small-big)

\[rsb_i(\pi) \text{ is the number of blocks } B \text{ in } \pi \text{ to the right of the block containing } i \text{ such that the opener of } B \text{ is smaller than } i \text{ and the closer of } B \text{ is greater than } i. \]

\[\pi = 6 \quad 8 \quad - \quad 5 \quad - \quad 1 \quad 4 \quad 7 \quad - \quad 3 \quad 9 \quad - \quad 2 \]

\[rsb_i : \quad 2 \quad 1 \quad / \quad 2 \quad / \quad 0 \quad 1 \quad / \quad / \quad / \]
\(\text{rsb}_i(\pi) \) is the number of blocks \(B \) in \(\pi \) to the right of the block containing \(i \) such that the opener of \(B \) is smaller than \(i \) and the closer of \(B \) is greater than \(i \).

\[
\pi = 6 \ 8 \ - \ 5 \ - \ 1 \ 4 \ 7 \ - \ 3 \ 9 \ - \ 2
\]

\[
\text{rsb}_i: \quad 2 \ 1 \ / \ 2 \ / \ 0 \ 1 \ 1 \ / \ /
\]
rsb (right-small-big)

$\text{rsb}_i(\pi)$ is the number of blocks B in π to the right of the block containing i such that the opener of B is smaller than i and the closer of B is greater than i.

\[
\pi = 6 \ 8 \ - \ 5 \ - \ 1 \ 4 \ 7 \ - \ 3 \ 9 \ - \ 2
\]

\[
\text{rsb}_i : \ 2 \ 1 \ / \ 2 \ / \ 0 \ 1 \ / \ 0 \ / \ 0
\]
rsb (right-small-big)

\(\text{rsb}_i(\pi) \) is the number of blocks \(B \) in \(\pi \) to the right of the block containing \(i \) such that the opener of \(B \) is smaller than \(i \) and the closer of \(B \) is greater than \(i \).

\[
\pi = 6 8 \quad \text{–} \quad 5 \quad \text{–} \quad 1 4 7 \quad \text{–} \quad 3 9 \quad \text{–} \quad 2 \\
\text{rsb}_i : \quad 2 1 \quad / \quad 2 \quad / \quad 0 1 \quad / \quad 0 0 \quad /
\]
\(\text{rsb} (\text{right-small-big}) \)

\(\text{rsb}_i(\pi) \) is the number of blocks \(B \) in \(\pi \) to the right of the block containing \(i \) such that the opener of \(B \) is smaller than \(i \) and the closer of \(B \) is greater than \(i \).

\[
\pi = 6 \ 8 \ - \ 5 \ - \ 1 \ 4 \ 7 \ - \ 3 \ 9 \ - \ 2
\]

\[
\text{rsb}_i : \ 2 \ 1 \ / \ 2 \ / \ 0 \ 1 \ / \ 0 \ 0 \ / \ 0
\]
rsb (right-small-big)

\[\text{rsb}_i(\pi) \] is the number of blocks \(B \) in \(\pi \) to the right of the block containing \(i \) such that the opener of \(B \) is smaller than \(i \) and the closer of \(B \) is greater than \(i \).

\[\pi = 6 \ 8 \ - \ 5 \ - \ 1 \ 4 \ 7 \ - \ 3 \ 9 \ - \ 2 \]
\[\text{rsb}_i : \quad 2 \ 1 \ / \ 2 \ / \ 0 \ 1 \ / \ 0 \ 0 \ / \ 0 \]
\[\text{rsb}(\pi) = 7 \]
lsb (left-small-big)

$$\text{lsb}_i(\pi)$$ is the number of blocks $$B$$ in $$\pi$$ to the left of the block containing $$i$$ such that the opener of $$B$$ is smaller than $$i$$ and the closer of $$B$$ is greater than $$i$$.
lsb (left-small-big)

\(lsb_i(\pi) \) is the number of blocks \(B \) in \(\pi \) to the left of the block containing \(i \) such that the opener of \(B \) is smaller than \(i \) and the closer of \(B \) is greater than \(i \).

\[
\pi = 68 - 5 - 147 - 39 - 2
\]

\(lsb_i : 00 / 0 / 001 / 10 / 1 \)
\(\text{lsb}_i(\pi) \) is the number of blocks \(B \) in \(\pi \) to the left of the block containing \(i \) such that the opener of \(B \) is smaller than \(i \) and the closer of \(B \) is greater than \(i \).

\[
\pi = 6 \ 8 \ - \ 5 \ - \ 1 \ 4 \ 7 \ - \ 3 \ 9 \ - \ 2
\]

\[
\text{lsb}_i : \ 0 \ 0 \ / \ 0 \ / \ 0 \ 0 \ 1 \ / \ 1 \ 0 \ / \ 1
\]

\[
\text{lsb}(\pi) = 3
\]
If \(\pi \in \mathcal{OP}_k^n \), there is a unique permutation \(\sigma \) in \(S_k \) such that

\[
\pi = B_{\sigma(1)} - B_{\sigma(2)} - \cdots - B_{\sigma(k)},
\]

where \(B_1 - B_2 - \cdots - B_k \) is a partition.
If $\pi \in \mathcal{OP}_k^n$, there is a unique permutation σ in S_k such that

$$\pi = B_{\sigma(1)} - B_{\sigma(2)} - \cdots - B_{\sigma(k)},$$

where $B_1 - B_2 - \cdots - B_k$ is a partition.

$$\pi = 6 \ 8 \ - \ 5 \ - \ 1 \ 4 \ 7 \ - \ 3 \ 9 \ - \ 2$$
If $\pi \in \mathcal{OP}_k^n$, there is a unique permutation σ in S_k such that

$$\pi = B_{\sigma(1)} - B_{\sigma(2)} - \cdots - B_{\sigma(k)},$$

where $B_1 - B_2 - \cdots - B_k$ is a partition.

$$\pi = \begin{array}{cccccccc}
6 & 8 & - & 5 & - & 1 & 4 & 7 & - & 3 & 9 & - & 2 \\
1 & 4 & 7 & - & 2 & - & 3 & 9 & - & 5 & - & 6 & 8
\end{array}$$
If $\pi \in \mathcal{OP}_k^n$, there is a unique permutation σ in S_k such that

$$\pi = B_{\sigma(1)} - B_{\sigma(2)} - \cdots - B_{\sigma(k)},$$

where $B_1 - B_2 - \cdots - B_k$ is a partition.

$$\pi = 6 8 - 5 - 1 4 7 - 3 9 - 2$$
$$1 4 7 - 2 - 3 9 - 5 - 6 8$$

$\text{perm}(\pi) = 54132$
If $\pi \in \mathcal{OP}_k^n$, there is a unique permutation σ in S_k such that

$$\pi = B_{\sigma(1)} - B_{\sigma(2)} - \cdots - B_{\sigma(k)},$$

where $B_1 - B_2 - \cdots - B_k$ is a partition.

We set

$$\text{perm}(\pi) = \sigma,$$
If \(\pi \in \mathcal{OP}_k^n \), there is a unique permutation \(\sigma \) in \(S_k \) such that

\[
\pi = B_{\sigma(1)} - B_{\sigma(2)} - \cdots - B_{\sigma(k)},
\]

where \(B_1 - B_2 - \cdots - B_k \) is a partition.

We set

\[
\text{perm}(\pi) = \sigma,
\]

\[
\text{inv} \, \pi = \text{inv} \, \sigma,
\]
If $\pi \in \mathcal{OP}_k^n$, there is a unique permutation σ in S_k such that

$$\pi = B_{\sigma(1)} - B_{\sigma(2)} - \cdots - B_{\sigma(k)},$$

where $B_1 - B_2 - \cdots - B_k$ is a partition.

We set

$$\text{perm}(\pi) = \sigma,$$

$$\text{inv} \pi = \text{inv} \sigma,$$

$$\text{cinv} \sigma = \binom{n}{2} - \text{inv} \sigma.$$
If $\pi \in \mathcal{OP}_k^n$, there is a unique permutation σ in S_k such that

$$\pi = B_{\sigma(1)} - B_{\sigma(2)} - \cdots - B_{\sigma(k)},$$

where $B_1 - B_2 - \cdots - B_k$ is a partition.

$$\pi = 6 \ 8 \ - \ 5 \ - \ 1 \ 4 \ 7 \ - \ 3 \ 9 \ - \ 2$$

\[
\begin{align*}
\text{perm}(\pi) &= 54132 \\
\text{inv}(\pi) &= 8
\end{align*}
\]
If $\pi \in \mathcal{OP}_k^n$, there is a unique permutation σ in S_k such that

$$\pi = \sigma_1 - \sigma_2 - \cdots - \sigma_k,$$

where $B_1 - B_2 - \cdots - B_k$ is a partition.

$$\pi = 6\ 8 - 5 - 1\ 4\ 7 - 3\ 9 - 2$$

$\text{perm}(\pi) = 54132$

$\text{inv}(\pi) = 8$

$\text{cinv}(\pi) = \binom{5}{2} - 8 = 2$
Let $\pi = B_1 - B_2 - \cdots - B_k$ be in \mathcal{OP}_n^k.
Let $\pi = B_1 - B_2 - \cdots - B_k$ be in \mathcal{OP}_n^k.

A partial order on blocks:

$B_i > B_j$ if all the letters of B_i are greater than those of B_j; in other words, if the opener of B_i is greater than the closer of B_j.
Let $\pi = B_1 - B_2 - \cdots - B_k$ be in \mathcal{OP}_n^k.

A partial order on blocks:

$B_i > B_j$ if all the letters of B_i are greater than those of B_j; in other words, if the opener of B_i is greater than the closer of B_j.

$$\pi = 68 - 5 - 147 - 39 - 2$$
Let \(\pi = B_1 - B_2 - \cdots - B_k \) be in \(\mathcal{OP}_n^k \).

A partial order on blocks:

\(B_i > B_j \) if all the letters of \(B_i \) are greater than those of \(B_j \); in other words, if the opener of \(B_i \) is greater than the closer of \(B_j \).

\[\pi = 6\ 8\ -\ 5\ -\ 1\ 4\ 7\ -\ 3\ 9\ -\ 2 \]

\(\{6, 8\} > \{5\} \).
Block Operations

Let \(\pi = B_1 - B_2 - \cdots - B_k \) be in \(\mathcal{OP}_n^k \).

A partial order on blocks:

\[B_i > B_j \] if all the letters of \(B_i \) are greater than those of \(B_j \); in other words, if the opener of \(B_i \) is greater than the closer of \(B_j \).

\[\pi = 6 8 - 5 - 1 4 7 - 3 9 - 2 \]

\(\{6, 8\} > \{2\} \).
Block Operations

Let $\pi = B_1 - B_2 - \cdots - B_k$ be in \mathcal{OP}_n^k.

A partial order on blocks:

$B_i > B_j$ if all the letters of B_i are greater than those of B_j; in other words, if the opener of B_i is greater than the closer of B_j.

$\pi = 6 8 - 5 - 1 4 7 - 3 9 - 2$

$\{5\} > \{2\}$.
Let $\pi = B_1 - B_2 - \cdots - B_k$ be in \mathcal{OP}_n^k.

A partial order on blocks:

$B_i > B_j$ if all the letters of B_i are greater than those of B_j; in other words, if the opener of B_i is greater than the closer of B_j.

$$\pi = 68 - 5 - 147 - 39 - 2$$

$$\{3, 9\} > \{2\}.$$
Block Operations

Let \(\pi = B_1 - B_2 - \cdots - B_k \) be in \(\mathcal{OP}_n^k \).

Block inversion:

A block inversion in \(\pi \) is a pair \((i, j)\) such that \(i < j \) and \(B_i > B_j \). We denote by \(b\text{Inv}\pi \) the number of block inversions in \(\pi \). We also set \(c\text{bInv} = \binom{k}{2} - b\text{Inv} \).
Let $\pi = B_1 - B_2 - \cdots - B_k$ be in \mathcal{OP}_n^k.

Block inversion:

A block inversion in π is a pair (i, j) such that $i < j$ and $B_i > B_j$. We denote by $b\text{Inv}\,\pi$ the number of block inversions in π. We also set $c\text{bInv} = \left(\begin{array}{c}k \\ 2\end{array}\right) - b\text{Inv}$.

\[\pi = 6\quad 8\quad -\quad 5\quad -\quad 1\quad 4\quad 7\quad -\quad 3\quad 9\quad -\quad 2 \]
Block Operations

Let $\pi = B_1 - B_2 - \cdots - B_k$ be in \mathcal{OP}_n^k.

Block inversion:

A block inversion in π is a pair (i, j) such that $i < j$ and $B_i > B_j$. We denote by $bInv(\pi)$ the number of block inversions in π. We also set $cbInv = \binom{k}{2} - bInv$.

$\pi = 6 8 - 5 - 1 4 7 - 3 9 - 2$,

$bInv(\pi) = 4$, $cbInv(\pi) = \binom{5}{2} - 4 = 6$.
Let \(\pi = B_1 - B_2 - \cdots - B_k \) be in \(\mathcal{OP}_n^k \).

Block descent:

A block descent in \(\pi \) is a block \(B_i \) such that \(i \) and \(B_i > B_{i+1} \).
Let $\pi = B_1 - B_2 - \cdots - B_k$ be in \mathcal{OP}_n^k.

Block descent:

A block descent in π is a block B_i such that i and $B_i > B_{i+1}$.

\[
\pi = 6 8 - 5 - 1 4 7 - 3 9 - 2
\]

\[
\{6 8\} > \{5\}, \{3 9\} > \{2\}.
\]
Let \(\pi = B_1 - B_2 - \cdots - B_k \) be in \(\mathcal{OP}_n^k \).

Block descent:

The block block major index, denote by \(b\text{Maj} \pi \), is *the sum of indices of block descents in* \(\pi \). We also set \(c_b\text{Maj} = \binom{k}{2} - b\text{Maj} \).
Let \(\pi = B_1 - B_2 - \cdots - B_k \) be in \(\mathcal{OP}_n^k \).

Block descent:

The block block major index, denote by \(\text{bMaj} \pi \), is the sum of indices of block descents in \(\pi \). We also set \(\text{cbMaj} = \binom{k}{2} - \text{bMaj} \).

\[
\pi = 6 \overline{8} - 5 - 1 \overline{4} 7 - 3 \overline{9} - 2
\]

\[
1 \quad 2 \quad 3 \quad 4 \quad 5
\]

\[\text{bMaj} \pi = 1 + 4 = 5, \quad \text{cbMaj} \pi = \binom{5}{2} - 5 = 5.\]
mak and lmak

Definition [Steingrímsson (Foata & Zeilberger)]

mak = ros + lcs,
mak and lmak

Definition [Steingrímsson (Foata & Zeilberger)]

\[
\begin{align*}
\text{mak} &= \text{ros} + \text{lcs}, \\
\text{lmak} &= n(k - 1) - [\text{los} + \text{rcs}],
\end{align*}
\]
mak and lmak

Definition [Steingrímsson (Foata & Zeilberger)]

\[\text{mak} = \text{ros} + \text{lcs}, \]
\[\text{lmak} = n(k - 1) - [\text{los} + \text{rcs}], \]
\[\text{mak}' = \text{lob} + \text{rcb}, \]
mak and lmak

Definition [Steingrímsson (Foata & Zeilberger)]

\[\text{mak} = \text{ros} + \text{lcs}, \]
\[\text{lmak} = n(k - 1) - [\text{los} + \text{rcs}], \]
\[\text{mak}' = \text{lob} + \text{rcb}, \]
\[\text{lmak}' = n(k - 1) - [\text{lcb} + \text{rob}]. \]
mak and lmak

Definition [Steingrímsson (Foata & Zeilberger)]

\[
\begin{align*}
\text{mak} &= \text{ros} + \text{lcs}, \\
\text{lmak} &= n(k - 1) - [\text{los} + \text{rcs}], \\
\text{mak}' &= \text{lob} + \text{rcb}, \\
\text{lmak}' &= n(k - 1) - [\text{lcb} + \text{rob}].
\end{align*}
\]

Proposition 3 (Ksavrelol & Zeng)

\[
\begin{align*}
\text{mak} &= \text{lmak}', \quad \text{and} \quad \text{mak}' = \text{lmak}.
\end{align*}
\]
Definition
Let \mathcal{OP}^k be the set of all ordered partitions with k blocks.

$$cinv_{\text{LSB}} := \text{lsb} + \text{cbInv} + \binom{k}{2}$$
Definition
Let \mathcal{OP}^k be the set of all ordered partitions with k blocks.

\[
cinvLSB := lsb + cbInv + \binom{k}{2}
\]
\[
cmajLSB := lsb + cbMaj + \binom{k}{2}
\]
Definition

Let \mathcal{OP}^k be the set of all ordered partitions with k blocks.

\[
cinvLSB := \text{lsb} + \text{cbInv} + \binom{k}{2}
\]
\[
cmajLSB := \text{lsb} + \text{cbMaj} + \binom{k}{2}
\]

\[
\pi = 6 8 \quad - \quad 5 \quad - \quad 1 4 7 \quad - \quad 3 9 \quad - \quad 2
\]
Definition

Let \mathcal{OP}^k be the set of all ordered partitions with k blocks.

$cinv_{\text{LSB}} := \text{lsb} + \text{cbInv} + \binom{k}{2}$

$cmaj_{\text{LSB}} := \text{lsb} + \text{cbMaj} + \binom{k}{2}$

$\pi = 6 \quad 8 \quad - \quad 5 \quad - \quad 1 \quad 4 \quad 7 \quad - \quad 3 \quad 9 \quad - \quad 2$

$\text{lsb} \pi = 3$, $\text{cbInv} \pi = 6$, $\text{cbMaj} \pi = 5$.
Definition
Let \mathcal{OP}^k be the set of all ordered partitions with k blocks.

\[
cinvLSB := \text{lsb} + \text{cbInv} + \binom{k}{2}
\]
\[
cmajLSB := \text{lsb} + \text{cbMaj} + \binom{k}{2}
\]

\[
\pi = 6 \ 8 \ - \ 5 \ - \ 1 \ 4 \ 7 \ - \ 3 \ 9 \ - \ 2
\]
\[
cinvLSB \ \pi = 3 + 6 + \binom{5}{2} = 19.
\]
cinvLSB, cmajLSB

Definition

Let \(\mathcal{OP}^k \) be the set of all ordered partitions with \(k \) blocks.

\[
cinvLSB := \text{lsb} + \text{cbInv} + \binom{k}{2}
\]

\[
cmajLSB := \text{lsb} + \text{cbMaj} + \binom{k}{2}
\]

\[
\pi = 6 \ 8 \ - \ 5 \ - \ 1 \ 4 \ 7 \ - \ 3 \ 9 \ - \ 2
\]

\[
cinvLSB \ \pi = 3 + 6 + \binom{5}{2} = 19,
\]

\[
cmajLSB \ \pi = 3 + 5 + \binom{5}{2} = 18.
\]
Consider the following generating functions of OP^k:
Consider the following generating functions of \mathcal{OP}^k:

$$\varphi_k(a; x, y, t, u) = \sum_{\pi \in \mathcal{OP}^k} x^{(\text{mak}+\text{bInv})\pi} y^{\text{cinvLSB} \pi} t^{\text{inv} \pi} u^{\text{cinv} \pi} a^{\mid\pi\mid},$$

where $\mid\pi\mid = n$ if π is an ordered partition of $[n]$.
Consider the following generating functions of \mathcal{OP}^k:

$$
\psi_k(a; x, y, t, u) = \sum_{\pi \in \mathcal{OP}^k} x^{(l\text{mak} + b\text{Inv})\pi} y^{\text{cinvLSB}} \pi t^{\text{inv}} \pi u^{\text{cinv}} \pi a^{|\pi|},
$$

where $|\pi| = n$ if π is an ordered partition of $[n]$.
Main Result

Definition

\[[n]_{p,q} = \frac{p^n - q^n}{p - q} : p, q \text{-integer} \]
Main Result

Definition

\[
[n]_{p,q} = \frac{p^n - q^n}{p-q} : p, q\text{-integer}
\]

\[
[n]_{p,q}! = [1]_{p,q}[2]_{p,q} \cdots [n]_{p,q} : p, q\text{-factorial}
\]
Main Result

Definition

\[
[n]_{p,q} = \frac{p^n - q^n}{p-q} : p, q\text{-integer}
\]

\[
[n]_{p,q}! = [1]_{p,q}[2]_{p,q} \cdots [n]_{p,q} : p, q\text{-factorial}
\]

\[
[k]_{p,q} = \frac{[n]_{p,q}!}{[k]_{p,q}![n-k]_{p,q}!} : p, q\text{-binomial coefficient}
\]
One of the main results of our paper is the following theorem:
One of the main results of our paper is the following theorem:

Theorem We have

\[
\varphi_k(a; x, y, t, u) = \frac{a^k (xy)^\binom{k}{2} [k]_{tx,uy}!}{\prod_{i=1}^{k} (1 - a[i] x, y)}.
\]
One of the main results of our paper is the following theorem:

Theorem We have

$$
\varphi_k(a; x, y, t, u) = \frac{a^k (xy)^{\binom{k}{2}} [k]_{tx, uy}!}{\prod_{i=1}^{k} (1 - a[i]_{x,y})},
$$

$$
\psi_k(a; x, y, t, u) = \frac{a^k (xy)^{\binom{k}{2}} [k]_{tx, uy}!}{\prod_{i=1}^{k} (1 - a[i]_{x,y})}.
$$
Let $\pi = B_1 - B_2 - \cdots - B_k$ be in OP_n^k.
Let \(\pi = B_1 - B_2 - \cdots - B_k \) be in \(OP^k_n \).

The restriction \(B_j \cap [i] \) of a block \(B_j \) on \([i]\) is said to be \textbf{active} if \(B_j \neq [i] \) and \(B_j \cap [i] \neq \emptyset \).
Let $\pi = B_1 - B_2 - \cdots - B_k$ be in \mathcal{OP}_n^k.

The restriction $B_j \cap [i]$ of a block B_j on $[i]$ is said to be **complete** if $B_j \subseteq [i]$.
Let $\pi = B_1 - B_2 - \cdots - B_k$ be in \mathcal{OP}_n^k.

$$T_i(\pi) = B_1(\leq i) - B_2(\leq i) - \cdots - B_k(\leq i),$$

where $B_j(\leq i) = B_j \cap [i]$, while empty sets are omitted. The sequence $(T_i(\pi))_{1 \leq i \leq n}$ is called the **trace** of the ordered partition π.

Euler-Mahonian Statistics of Ordered Partitions – p.20/35
Let $\pi = B_1 - B_2 - \cdots - B_k$ be in \mathcal{OP}_n^k. Then

$$T_i(\pi) = B_1(\leq i) - B_2(\leq i) - \cdots - B_k(\leq i),$$

where $B_j(\leq i) = B_j \cap [i]$, while empty sets are omitted. The sequence $(T_i(\pi))_{1 \leq i \leq n}$ is called the **trace** of the ordered partition π.

Example

$$\pi = 6 \ 8 \ - \ 5 \ - \ 1 \ 4 \ 7 \ - \ 3 \ 9 \ - \ 2$$
Let \(\pi = B_1 - B_2 - \cdots - B_k \) be in \(\mathcal{OP}^k_n \).

\[
T_i(\pi) = B_1(\leq i) - B_2(\leq i) - \cdots - B_k(\leq i),
\]

where \(B_j(\leq i) = B_j \cap [i] \), while empty sets are omitted. The sequence \((T_i(\pi))_{1 \leq i \leq n} \) is called the trace of the ordered partition \(\pi \).

\[\text{Example}\]

\[\pi = \begin{array}{ccccccc} 6 & 8 & - & 5 & - & 1 & 4 & 7 & - & 3 & 9 & - & 2 \\
T_1(\pi) = & 1 \end{array}\]
Let $\pi = B_1 - B_2 - \cdots - B_k$ be in \mathcal{OP}_n^k.

$$T_i(\pi) = B_1(\leq i) - B_2(\leq i) - \cdots - B_k(\leq i),$$

where $B_j(\leq i) = B_j \cap [i]$, while empty sets are omitted. The sequence $(T_i(\pi))_{1 \leq i \leq n}$ is called the trace of the ordered partition π.

Example

$$\pi = 6 \ 8 \ - \ 5 \ - \ 1 \ 4 \ 7 \ - \ 3 \ 9 \ - \ 2$$

$$T_2(\pi) = \begin{array}{c} 1 \\ \end{array} \ - \ 2$$
Let $\pi = B_1 - B_2 - \cdots - B_k$ be in \mathcal{OP}_n^k.

$$T_i(\pi) = B_1(\leq i) - B_2(\leq i) - \cdots - B_k(\leq i),$$

where $B_j(\leq i) = B_j \cap [i]$, while empty sets are omitted. The sequence $(T_i(\pi))_{1 \leq i \leq n}$ is called the trace of the ordered partition π.

Example

$$\pi = 6 \ 8 \ - \ 5 \ - \ 1 \ 4 \ 7 \ - \ 3 \ 9 \ - \ 2$$

$$T_3(\pi) = 1 \ - \ 3 \ - \ 2$$
Let $\pi = B_1 - B_2 - \cdots - B_k$ be in \mathcal{OP}_n^k.

$$T_i(\pi) = B_1(\leq i) - B_2(\leq i) - \cdots - B_k(\leq i),$$

where $B_j(\leq i) = B_j \cap [i]$, while empty sets are omitted. The sequence $(T_i(\pi))_{1 \leq i \leq n}$ is called the trace of the ordered partition π.

Example

$$\pi = \begin{array}{cccccccc}
6 & 8 & - & 5 & - & 1 & 4 & 7 & - & 3 & 9 & - & 2 \\
\end{array}$$

$$T_4(\pi) = \begin{array}{cccccccc}
1 & 4 & - & 3 & - & 2 \\
\end{array}$$
Let $\pi = B_1 - B_2 - \cdots - B_k$ be in \mathcal{OP}_n^k.

$$T_i(\pi) = B_1(\leq i) - B_2(\leq i) - \cdots - B_k(\leq i),$$

where $B_j(\leq i) = B_j \cap [i]$, while empty sets are omitted. The sequence $(T_i(\pi))_{1 \leq i \leq n}$ is called the trace of the ordered partition π.

Example

$$\pi = 68 - 5 - 147 - 39 - 2$$

$$T_5(\pi) = 5 - 14 - 3 - 2$$
Let $\pi = B_1 - B_2 - \cdots - B_k$ be in OP_k^n.

$$T_i(\pi) = B_1(\leq i) - B_2(\leq i) - \cdots - B_k(\leq i),$$

where $B_j(\leq i) = B_j \cap [i]$, while empty sets are omitted. The sequence $(T_i(\pi))_{1 \leq i \leq n}$ is called the trace of the ordered partition π.

Example

$$\pi = 6 \ 8 \ - \ 5 \ - \ 1 \ 4 \ 7 \ - \ 3 \ 9 \ - \ 2$$

$$T_6(\pi) = 6 \ - \ 5 \ - \ 1 \ 4 \ - \ 3 \ - \ 2$$
Let $\pi = B_1 - B_2 - \cdots - B_k$ be in \mathcal{OP}_n^k. Then

$$T_i(\pi) = B_1(\leq i) - B_2(\leq i) - \cdots - B_k(\leq i),$$

where $B_j(\leq i) = B_j \cap [i]$, while empty sets are omitted. The sequence $(T_i(\pi))_{1 \leq i \leq n}$ is called the trace of the ordered partition π.

Example

$$\pi = 6 \ 8 \ - \ 5 \ - \ 1 \ 4 \ 7 \ - \ 3 \ 9 \ - \ 2$$

$$T_7(\pi) = 6 \ - \ 5 \ - \ 1 \ 4 \ 7 \ - \ 3 \ - \ 2$$
Let $\pi = B_1 - B_2 - \cdots - B_k$ be in \mathcal{OP}_n^k.\[T_i(\pi) = B_1(\leq i) - B_2(\leq i) - \cdots - B_k(\leq i),\]
where $B_j(\leq i) = B_j \cap [i]$, while empty sets are omitted. The sequence $(T_i(\pi))_{1 \leq i \leq n}$ is called the trace of the ordered partition π.

Example

$\pi = 6 8 - 5 - 1 4 7 - 3 9 - 2$

$T_8(\pi) = 6 8 - 5 - 1 4 7 - 3 - 2$
Let $\pi = B_1 - B_2 - \cdots - B_k$ be in \mathcal{OP}_n^k.

$$T_i(\pi) = B_1(\leq i) - B_2(\leq i) - \cdots - B_k(\leq i),$$

where $B_j(\leq i) = B_j \cap [i]$, while empty sets are omitted. The sequence $(T_i(\pi))_{1 \leq i \leq n}$ is called the *trace* of the ordered partition π.

Example

$$\pi = \begin{array}{ccccccc}
6 & 8 & - & 5 & - & 1 & 4 & 7 & - & 3 & 9 & - & 2
\end{array}$$

$$T_9(\pi) = \begin{array}{ccccccc}
6 & 8 & - & 5 & - & 1 & 4 & 7 & - & 3 & 9 & - & 2
\end{array}$$
Let $\pi = B_1 - B_2 - \cdots - B_k$ be in \mathcal{OP}_n^k.

$$T_i(\pi) = B_1(\leq i) - B_2(\leq i) - \cdots - B_k(\leq i),$$

where $B_j(\leq i) = B_j \cap [i]$, while empty sets are omitted. The sequence $(T_i(\pi))_{1 \leq i \leq n}$ is called the trace of the ordered partition π.

Definition

$$x_i = \# \text{ complete blocks of } T_i(\pi) : \text{ abscissa}$$

$$y_i = \# \text{ active blocks of } T_i(\pi) : \text{ height}$$

Let us call $\{(x_i, y_i)\}_{1 \leq i \leq n}$ the form of π.
\[\pi = \{6\} - \{3, 5, 7\} - \{1, 4\} - \{2, 8\} \]

- \(i \)-th trace of \(\pi \) surjection
- 1-th trace of \(\pi \)
- \(\{1, \ldots\} \)
\[\pi = \{6\} - \{3, 5, 7\} - \{1, 4\} - \{2, 8\} \]

- \(i\)-th trace of \(\pi\) \hspace{1cm} \text{surjection} \hspace{1cm} \text{form of } \pi

\[2\text{-th trace of } \pi \quad \{1, \cdots \} - \{2, \cdots \} \]

\(Euler-Mahonian\ Statistics\ of\ Ordered\ Partitions\)
\[\pi = \{6\} - \{3, 5, 7\} - \{1, 4\} - \{2, 8\} \]

\(i\)-th trace of \(\pi\) \rightarrow \text{surjection} \rightarrow \text{form of } \pi

3-th trace of \(\pi\)
\(\{3, \cdots\} - \{1, \cdots\} - \{2, \cdots\} \)
\[\pi = \{6\} - \{3, 5, 7\} - \{1, 4\} - \{2, 8\} \]

\[\text{surjection} \quad \text{i-th trace of } \pi \quad \text{form of } \pi \]

4-th trace of \(\pi \)
\[\{3, \cdots\} - \{1, 4\} - \{2, \cdots\} \]
\[\pi = \{6\} - \{3, 5, 7\} - \{1, 4\} - \{2, 8\} \]

- \(i\)-th trace of \(\pi\)
- 5-th trace of \(\pi\)

\{3, 5, \ldots\} - \{1, 4\} - \{2, \ldots\}
\[\pi = \{6\} - \{3, 5, 7\} - \{1, 4\} - \{2, 8\} \]

6-th trace of \(\pi\) \(\longrightarrow\) form of \(\pi\)

i-th trace of \(\pi\) \(\longrightarrow\) surjection

active blocks

complete blocks
\[\pi = \{6\} - \{3, 5, 7\} - \{1, 4\} - \{2, 8\} \]

\(i\)-th trace of \(\pi\) \hspace{1cm} \text{surjection} \hspace{1cm} \text{form of } \pi

7-th trace of \(\pi\)

\[\{6\} - \{3, 5, 7\} - \{1, 4\} - \{2, \cdots \} \]
Path

\[\pi = \{6\} - \{3, 5, 7\} - \{1, 4\} - \{2, 8\} \]

\(i\)-th trace of \(\pi\)

form of \(\pi\)

\(8\)-th trace of \(\pi\)

\{6\} - \{3, 5, 7\} - \{1, 4\} - \{2, 8\}

complete blocks

active blocks
\[
\pi = \{6\} - \{3, 5, 7\} - \{1, 4\} - \{2, 8\}
\]

Thus the following path correspond to the ordered partition \(\pi = \{6\} - \{3, 5, 7\} - \{1, 4\} - \{2, 8\} \).
\[
\pi = \{6\} - \{3, 5, 7\} - \{1, 4\} - \{2, 8\}.
\]
\[\pi = \{6\} - \{3, 5, 7\} - \{1, 4\} - \{2, 8\}. \]
\[T_6(\pi) = \{6\} - \{3, 5, \ldots \} - \{1, 4\} - \{2, \ldots \}. \]
\[\pi = \{6\} - \{3, 5, 7\} - \{1, 4\} - \{2, 8\}. \]

\[T_6(\pi) = \{6\} - \{3, 5, \cdots \} - \{1, 4\} - \{2, \cdots \}. \]

Form of \(T_6(\pi) = (2, 2) \)
\(\pi = \{6\} - \{3, 5, 7\} - \{1, 4\} - \{2, 8\}. \)

\(T_6(\pi) = \{6\} - \{3, 5, \ldots\} - \{1, 4\} - \{2, \ldots\}. \)

Form of \(T_6(\pi) = (2, 2) \)

2 + 2 + 1 = 5 possibilities to open a new block or insert a singleton into \(T_6(\pi) \).
\[\pi = \{6\} - \{3, 5, 7\} - \{1, 4\} - \{2, 8\}. \]
\[T_6(\pi) = \{6\} - \{3, 5, \ldots\} - \{1, 4\} - \{2, \ldots\}. \]

Form of \(T_6(\pi) = (2, 2) \)

2 possibilities to close an active block or add a transient into \(T_6(\pi) \).

\[\{6\} - \{3, 5, \ldots\} - \{1, 4\} - \{2, \ldots\} \]

↑ 1

↑ 2
Definition

A path diagram of depth k and length n
Definition
A path diagram of depth k and length n is a pair (ω, ξ):

- ω is a path in \mathbb{N}^2 of length n from $(0, 0)$ to $(k, 0)$, whose steps are North, East, South-East or Null.
Definition
A path diagram of depth k and length n is a pair (ω, ξ):

$$\star \xi = (\xi_i)_{1 \leq i \leq n}$$

is a sequence of integers.
Definition
A path diagram of depth \(k \) and length \(n \) is a pair \((\omega, \xi)\):

\[\xi = (\xi_i)_{1 \leq i \leq n} \]

is a sequence of integers such that:

\[1 \leq \xi_i \leq q \]

if the \(i \)-th step is Null or South-East, of height \(q \),

Euler-Mahonian Statistics of Ordered Partitions – p.23/35
Definition
A path diagram of depth k and length n is a pair (ω, ξ):

$\star \xi = (\xi_i)_{1 \leq i \leq n}$ is a sequence of integers such that:

$\spadesuit 1 \leq \xi_i \leq q$ if the i-th step is Null or South-East, of height q,

$\spadesuit 1 \leq \xi_i \leq p + q + 1$ if the i-th step is North or East, of abscissa p and height q.
$$\pi = \{6\} - \{3, 5, 7\} - \{1, 4\} - \{2, 8\}$$

i-th trace of π

1-th trace of π

$\{1, \cdots \}$

$\xi_1 = 1$

Euler-Mahonian Statistics of Ordered Partitions – p.24/35
\[\pi = \{6\} - \{3, 5, 7\} - \{1, 4\} - \{2, 8\} \]

\[i\text{-th trace of } \pi \quad \text{bijection} \quad \text{path diagram of } \pi \]

2-th trace of \(\pi \)
\[\{1, \cdots\} - \{2, \cdots\} \]

\[\xi_2 = 2 \]
\[\pi = \{6\} - \{3, 5, 7\} - \{1, 4\} - \{2, 8\} \]

\[i\text{-th trace of } \pi \quad \text{bijection} \quad \text{path diagram of } \pi \]

3-th trace of \(\pi \)
\[\{3, \cdots \} - \{1, \cdots \} - \{2, \cdots \} \]

\[\xi_3 = 1 \]
\[\pi = \{6\} - \{3, 5, 7\} - \{1, 4\} - \{2, 8\} \]

The \(i\)-th trace of \(\pi\): bijection

4-th trace of \(\pi\):
\[\{3, \cdots\} - \{1, 4\} - \{2, \cdots\}\]

\[\xi_4 = 2\]
\(\pi = \{6\} - \{3, 5, 7\} - \{1, 4\} - \{2, 8\} \)

\(i \)-th trace of \(\pi \)

\(\xi_5 = 1 \)

Euler-Mahonian Statistics of Ordered Partitions – p.24/35
\[\pi = \{6\} - \{3, 5, 7\} - \{1, 4\} - \{2, 8\} \]

The 6-th trace of \(\pi \) is:
\[\xi_6 = 1 \]
\[\pi = \{6\} - \{3, 5, 7\} - \{1, 4\} - \{2, 8\} \]

Path

\[\xi_7 = 1 \]

i-th trace of \(\pi \) → bijection → path diagram of \(\pi \)

7-th trace of \(\pi \)

\{6\} − \{3, 5, 7\} − \{1, 4\} − \{2, \cdots \}
\[\pi = \{6\} - \{3, 5, 7\} - \{1, 4\} - \{2, 8\} \]

\(i \)-th trace of \(\pi \)

path diagram of \(\pi \)

8-th trace of \(\pi \)
\[\{6\} - \{3, 5, 7\} - \{1, 4\} - \{2, 8\} \]

\(\xi_8 = 1 \)
\[\pi = \{6\} - \{3, 5, 7\} - \{1, 4\} - \{2, 8\} \]

Thus we obtain
\[\omega = (N, N, N, S-E, \text{Null}, E, S-E, S-E). \]
\[\xi = (1, 2, 1, 2, 1, 1, 1, 1) \]
The digraph D_k

\[
\begin{align*}
\alpha^p \theta^q [p + q + 1]_{\varepsilon, \eta} & \quad \text{if } N \text{ or } E; \\
\beta^p [q]_{\gamma, \delta} & \quad \text{if } \text{Null or S-E.}
\end{align*}
\]
The digraph D_k

\[n_k = 1 + \cdots + (k+1) = \frac{(k+1)(k+2)}{2} \]

\[
\begin{cases}
\alpha^p \theta^q [p + q + 1]_{\varepsilon, \eta} \\
\beta^p [q]_{\gamma, \delta}
\end{cases}
\] if N or E;
if Null or S-E.
The digraph D_k

(a) if the i-th step of ω is North (resp. East), then $i \in O(\pi)$ (resp. $i \in S(\pi)$) and

$$(\text{lcs} + \text{rcs})_i(\pi) = p_{i-1}, \quad \text{los}_i(\pi) = \xi_i - 1,$$

$$(\text{lsb} + \text{rsb})_i(\pi) = q_{i-1}, \quad \text{ros}_i(\pi) = p_{i-1} + q_{i-1} + 1 - \xi_i;$$
The digraph D_k

(b) if the i-th step of ω is South-East (resp. Null), then $i \in C(\pi)$ (resp. $i \in T(\pi)$) and

\[
\begin{align*}
(lcs + rcs)_i(\pi) &= p_{i-1}, \\
(\text{lsb})_i(\pi) &= \xi_i - 1, \\
(lsb + rsb)_i(\pi) &= q_{i-1} - 1, \\
(\text{rsb})_i(\pi) &= q_{i-1} - \xi_i.
\end{align*}
\]
The digraph D_k

\[
Q_k(a; \alpha, \beta, \gamma, \delta, \varepsilon, \eta, \theta) := \sum_{\pi \in \mathcal{OP}^k} \alpha^{(lcs + rcs)(\mathcal{O} \cup \mathcal{S}) \pi} \beta^{(lcs + rcs)(\mathcal{T} \cup \mathcal{C}) \pi} \gamma^{rsb(\mathcal{T} \cup \mathcal{C}) \pi} \\
\times \delta^{\text{lsb}(\mathcal{T} \cup \mathcal{C}) \pi} \varepsilon^{\text{ros}(\mathcal{O} \cup \mathcal{S}) \pi} \eta^{\text{los}(\mathcal{O} \cup \mathcal{S}) \pi} \theta^{(\text{lsb} + \text{rsb})(\mathcal{O} \cup \mathcal{S}) \pi} a^{|\pi|}
\]

\[
= \sum_{w \in D_k : (0,0) \rightarrow (0,k)} \text{val}(w) a^{|w|}
\]
Transfer-Matrix Method

- $D = (V, E)$ a digraph.
Transfer-Matrix Method

- $D = (V, E)$ a digraph.
- $\text{val} : E \mapsto \mathbb{R}$ a valuation.
Transfer-Matrix Method

- \(D = (V, E) \) a digraph.
- \(val : E \mapsto \mathbb{R} \) a valuation.

Let \(A \) be the adjacency matrix of \(D \), i.e

\[
A_{ij} = val(v_i, v_j).
\]
Transfer-Matrix Method

- $D = (V, E)$ a digraph.
- $val : E \rightarrow \mathbb{R}$ a valuation.

Let A be the adjacency matrix of D, i.e.

$$A_{ij} = val(v_i, v_j).$$

Example
Transfer-Matrix Method

- $D = (V, E)$ a digraph.
- $\text{val} : E \mapsto \mathbb{R}$ a valuation.

Let A be the adjacency matrix of D, i.e

$$A_{ij} = \text{val}(v_i, v_j).$$

Example

$$A = \begin{pmatrix}
0 & 0 & s \\
st & t^2 & 0 \\
t & s^3 & 0
\end{pmatrix}$$
A walk of length k is a sequence $w = v_{i_0} v_{i_1} \ldots v_{i_k}$ of points of D such that $(v_{i_r}, v_{i_{r+1}}) \in E$.
A walk of length k is a sequence $w = v_{i_0} v_{i_1} \ldots v_{i_k}$ of points of D such that $(v_{i_r}, v_{i_{r+1}}) \in E$.

Theorem

$$\sum_{w : v_{i} \rightarrow v_{j}} val(w) z^{|w|} = (-1)^{i+j} \frac{\det(I - zA; j, i)}{\det(I - zA)}.$$
A walk of length \(k \) is a sequence \(w = v_{i_0}v_{i_1} \ldots v_{i_k} \) of points of \(D \) such that \((v_{i_r}, v_{i_r+1}) \in E\).

Example

\[
A = \begin{pmatrix}
0 & 0 & s \\
st & t^2 & 0 \\
t & s^3 & 0
\end{pmatrix}
\]

\(w_0 = v_3v_2v_2v_1v_3v_1 \) walk of length \(|w_0| = 5 \) and \(\text{val}(w_0) = s^3 \times t^2 \times st \times s \times t = s^5t^4 \).
A walk of length \(k \) is a sequence \(w = v_{i_0} v_{i_1} \ldots v_{i_k} \) of points of \(D \) such that \((v_{i_r}, v_{i_{r+1}}) \in E \).

Example

\[
\sum_{w:v_1 \to v_3} \text{val}(w)z^{|w|} = \frac{\det(I_2 - z A_2; 3, 1)}{\det(I_2 - z A_2)}
\]

\[
= \frac{z s(1 - zt^2)}{1 - zt^2 + z^3 s^5 t + z^2 ts - z^3 t^3 s}
\]
The determinant expression is given by:

\[Q_k(a; t_1, t_2, t_3, t_4, t_5, t_6, t_7) = \sum_{w \in D_k:(0,0) \to (0,k)} \text{val}(w) a^{|w|} \]

Transfer-matrix method

\[= (-1)^{1+n_k} \frac{\det(I - aA_k; n_k, 1)}{\det(I - aA_k)} \]
For instance, when $k = 2$, we have

\[
A_2 = \begin{pmatrix}
0 & 1 & 1 & | & 0 & 0 & 0 \\
0 & 1 & 1 & | & t_7 [2]_{t_5,t_6} & t_7 [2]_{t_5,t_6} & 0 \\
0 & 0 & 0 & | & 0 & t_1 [2]_{t_5,t_6} & t_1 [2]_{t_5,t_6} \\
0 & 0 & 0 & | & [2]_{t_3,t_4} & [2]_{t_3,t_4} & 0 \\
0 & 0 & 0 & | & 0 & t_2 & t_2 \\
0 & 0 & 0 & | & 0 & 0 & 0
\end{pmatrix}
\]
\[Q_2(a; t) = -\frac{\det(I_2 - aA_2; 6, 1)}{\det(I_2 - aA_2)} \]

\[= a^2[2]_{t_5,t_6} (at_2t_7 + t_1(1 - a[2]_{t_3,t_4})) \]

\[= \frac{a^2[2]_{t_5,t_6} (at_2t_7 + t_1(1 - a[2]_{t_3,t_4}))}{(1 - a)(1 - a[2]_{t_3,t_4})(1 - at_2)}. \]
In order to prove Steingrímsson’s conjecture, it is sufficient to evaluate the following special cases of $Q_k(a; t)$:

\[
\begin{align*}
 f_k(a; x, y, t, u) &= Q_k(a; x, x, x, y, t, u, y), \\
 g_k(a; x, y, t, u) &= Q_k(a; 1, x, 1, xy, t, u, y).
\end{align*}
\]
The goal of our proof is the following identity:

\[f_k(a; x, y, t, u) = \frac{a^k x^{(k)} [k]_{t, u}!}{\prod_{i=1}^{k} (1 - a[i]_{x, y})}, \]

\[g_k(a; x, y, t, u) = \frac{a^k [k]_{t, u}!}{\prod_{i=1}^{k} (1 - ax^{k-i} [i]_{xy})}. \]
Let A'_k and A''_k be the matrices obtained from A_k by making the substitutions. Let

$$M_k = I_k - aA'_k \quad \text{and} \quad N_k = I_k - aA''_k.$$

Then we derive from the above formula that

$$f_k(a; x, y, t, u) = \frac{(-1)^{1+n_k} \det(M_k; n_k, 1)}{\det M_k},$$

$$g_k(a; x, y, t, u) = \frac{(-1)^{1+n_k} \det(N_k; n_k, 1)}{\det N_k}.$$
Matrix M_k

Example

$k = 1$

$$M_1 = \begin{pmatrix} 1 & -a & -a \\ 0 & 1 - a & -a \\ 0 & 0 & 1 \end{pmatrix}$$
Matrix M_k

Example $k = 2$

$$M_2 = \begin{pmatrix}
1 & -a & -a & 0 & 0 & 0 \\
0 & 1-a & -a & -ay(t+u) & -ay(t+u) & 0 \\
0 & 0 & 1 & 0 & -ax(t+u) & -ax(t+u) \\
0 & 0 & 0 & 1-a(x+y) & -a(x+y) & 0 \\
0 & 0 & 0 & 0 & 1-ax & -ax \\
0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}. $$
The matrix M_k is defined inductively as follows:

$$M_k = \begin{pmatrix} M_{k-1} & \overline{M}_{k-1} \\ O_{k+1,n_{k-1}} & \hat{M}_{k-1} \end{pmatrix}.$$

Here \hat{M}_{k-1} is the $(k + 1) \times (k + 1)$ matrix

$$\hat{M}_{k-1} = (\delta_{ij} - ax^{i-1}[n + 1 - i]_{x,y}(\delta_{ij} + \delta_{i+1,j}))_{1 \leq i,j \leq k+1}.$$
The matrix M_k is defined inductively as follows:

$$M_k = \left(\begin{array}{c|c} M_{k-1} & M_{k-1} \\ \hline O_{k+1,n_{k-1}} & \hat{M}_{k-1} \end{array} \right).$$

Here \overline{M}_{k-1} is the $n_{k-1} \times (k + 1)$ matrix

$$\overline{M}_{k-1} = \left(\begin{array}{c} O_{n_{k-2},k+1} \\ \hline \hat{M}_{k-1} \end{array} \right).$$
The matrix M_k is defined inductively as follows:

$$M_k = \begin{pmatrix} M_{k-1} & M_{k-1} \\ O_{k+1,n_k-1} & \tilde{M}_{k-1} \end{pmatrix}.$$

with the $k \times (k + 1)$ matrix

$$\tilde{M}_{k-1} = (-a x^{i-1} y^{k-i} [k]_{t,u}(\delta_{ij} + \delta_{i+1,j}))_{1 \leq i \leq k, 1 \leq j \leq k+1}.$$
The matrix M_k is defined inductively as follows:

$$M_k = \begin{pmatrix}
M_{k-1} & \overline{M}_{k-1} \\
O_{k+1,n_k-1} & \widehat{M}_{k-1}
\end{pmatrix}.$$

Theorem

$$\det(M_k; n_k, 1) = (-1)^\binom{k}{2} a^k x^{\binom{k}{2}} [k]_{t,u}!$$

$$\times \prod_{m=1}^{k-1} \prod_{i=1}^{m} \left(1 - ax^i [m - i + 1]_{x,y}\right).$$
Matrix M_k

The matrix M_k is defined inductively as follows:

$$M_k = \begin{pmatrix}
M_{k-1} & \overline{M}_{k-1} \\
O_{k+1,n_k-1} & \widehat{M}_{k-1}
\end{pmatrix}.$$

Proof

Use

$$\det \left(\begin{array}{c|c}
A & B \\
\hline C & D
\end{array} \right) = \det A \cdot \det \left(D - CA^{-1}B \right).$$
Example \(k = 2 \)

\[
N_2(\lambda, a) = \begin{pmatrix}
\lambda & -a & -a & 0 & 0 & 0 \\
0 & \lambda - a & -a & -ay[2]_{t,u} & -ay[2]_{t,u} & 0 \\
0 & 0 & \lambda & 0 & -a[2]_{t,u} & -a[2]_{t,u} \\
0 & 0 & 0 & \lambda - a(1 + xy) & -a(1 + xy) & 0 \\
0 & 0 & 0 & 0 & \lambda - ax & -ax \\
0 & 0 & 0 & 0 & 0 & \lambda
\end{pmatrix}.
\]
The matrix N_k is defined inductively as follows:

$$N_k(\lambda, a) = \left(\begin{array}{c|c} N_{k-1}(\lambda, a) & \overline{N}_{k-1}(\lambda, a) \\ \hline O_{k+1,n_{k-1}} & \widehat{N}_{k-1}(\lambda, a) \end{array} \right)$$

Here $\widehat{N}_{k-1}(\lambda, a)$ is the $(k + 1) \times (k + 1)$ matrix

$$\widehat{N}_{n-1}(\lambda, a) = \left(\lambda \delta_{ij} - ax^{i-1}[n + 1 - i]_{xy}(\delta_{ij} + \delta_{i+1,j}) \right)_{1 \leq i,j \leq n+1}$$
The matrix N_k is defined inductively as follows:

$$N_k(\lambda, a) = \begin{pmatrix}
N_{k-1}(\lambda, a) & \overline{N}_{k-1}(\lambda, a) \\
O_{k+1, n_{k-1}} & \hat{N}_{k-1}(\lambda, a)
\end{pmatrix}$$

Here $\overline{N}_{k-1}(\lambda, a)$ is the $n_{k-1} \times (k + 1)$ matrix

$$\begin{pmatrix}
O_{n_{k-2}, k+1} \\
\hat{N}_{k-1}
\end{pmatrix}$$
The matrix N_k is defined inductively as follows:

$$N_k(\lambda, a) = \begin{pmatrix} N_{k-1}(\lambda, a) & \overline{N}_{k-1}(\lambda, a) \\ O_{k+1,n_{k-1}} & \hat{N}_{k-1}(\lambda, a) \end{pmatrix}$$

with the $k \times (k + 1)$ matrix

$$\hat{N}_{k-1} = \left(-ay^{k-i}[n]_{t,u} \cdot (\delta_{ij} + \delta_{i+1,j}) \right)_{1 \leq i \leq k, 1 \leq j \leq k+1}.$$
The matrix N_k is defined inductively as follows:

$$
N_k(\lambda, a) = \begin{pmatrix}
N_{k-1}(\lambda, a) & \bar{N}_{k-1}(\lambda, a) \\
O_{k+1,n_{k-1}} & \hat{N}_{k-1}(\lambda, a)
\end{pmatrix}
$$

Proof
Find the eigenvector of each eigenvalue.
\[n, k \begin{array}{c} \n, \ k \end{array}_{qr} = \begin{array}{c} n \end{array}_{qr} - q^{n-k} \begin{array}{c} k \end{array}_{qr}, \]
\[n, k_{q,r} = [n]_{qr} - q^{n-k}[k]_{qr}, \]

\[n_{q,r} = \begin{cases} \prod_{i=0}^{k-1} [n, i]_{q,r} / [k]_{qr}! & \text{if } 0 \leq k \leq n, \\ 0 & \text{otherwise.} \end{cases} \]
\[n, k_{q,r} = [n]_{qr} - q^{n-k}[k]_{qr}, \]
\[n_{q,r} = \begin{cases} \prod_{i=0}^{k-1} [n,i]_{q,r} / [k]_{qr}! & \text{if } 0 \leq k \leq n, \\ 0 & \text{otherwise.} \end{cases} \]

Example

\[3, 1_{q,r} = 1 + qr + q^2r^2 - q^2 \]
\[3, 2_{q,r} = \frac{(1+qr+q^2r^2)(1+qr+q^2r^2-q^2)}{(1+qr)(1+qr)}. \]
Eigenvectors

Define the row vectors $X_{n}^{m,l}$ of degree n_k as follows: For $1 \leq i \leq k + 1$ and $1 \leq j \leq i$, the $\left(\frac{i(i-1)}{2} + j \right)$th entry of $X_{n}^{m,l}$ is equal to

$$X_{i,j}^{m,l} = (-1)^{i+m+l} x^{-(m+l-1)(i-m-l)+\binom{j-l}{2}} y^{\binom{i-m-l}{2}}$$

$$\times \frac{[i-m-l]_{t,u}!}{[i-m-l]_{xy}!} \left[\begin{array}{c} i-1 \\ \end{array} \right]_{t,u} \left[\begin{array}{c} m + l - 1 \\ \end{array} \right]_{t,u} m \left[\begin{array}{c} m + l - j \\ \end{array} \right]_{x,y}.$$

Euler-Mahonian Statistics of Ordered Partitions – p.32/35
Let k be a positive integer. Let m and l be positive integers such that $0 \leq m \leq k - 1$ and $1 \leq l \leq k - m$. Then we have

$$X_{m,l}^k N_k(\lambda, a) = (\lambda - ax^{l-1}[m]_x y) X_{m,l}^k.$$
Conjecture

Consider the following two generating functions of ordered partitions with \(k \geq 0 \) blocks:

\[
\xi_k(a; x, y) := \sum_{\pi \in \mathcal{OP}^k} x^{(\text{mak} + b\text{Maj})\pi} y^{\text{cmaj}(\text{LSB})\pi} a^{\mid\pi\mid},
\]

\[
\eta_k(a; x, y) := \sum_{\pi \in \mathcal{OP}^k} x^{(\text{lmak} + b\text{Maj})\pi} y^{\text{cmaj}(\text{LSB})\pi} a^{\mid\pi\mid}.
\]
Conjecture

For \(k \geq 0 \), the following identities would hold:

\[
\xi_k(a; x, y) = \frac{a^k (xy)^{\binom{k}{2}} [k]_{x,y}!}{\prod_{i=1}^{k} (1 - a[i]_{x,y})},
\]

\[
\eta_k(a; x, y) = \frac{a^k (xy)^{\binom{k}{2}} [k]_{x,y}!}{\prod_{i=1}^{k} (1 - a[i]_{x,y})}.
\]

The End of Talk

Thank you!