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| Ordered.Partitions

An ordered partition of a set S into £ blocks is a
sequence By — By — - - - — B}, such that:

dNBAD, 1<i<kEk;
dBNB; =0, 1<i,j<k

A |_|f:1 b= 5.
Set [n] :={1,...,n}.

m={2,9} — {3} — {1,4,8} — {5,6} — {7}

Is an ordered partition of 9| with 5 blocks. I
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The Stirling number of the second kind
satisfy:

Sn,k)=Sn—1,k—1)+kSn—1k).

The Stirling number of the 2nd kind
counts the number of (unordered) partitions of
n| into k blocks.

Definition
OPr .= {ordered partitions of [rn] with & blocks}.
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| Stirling Number of the 2nd kind

The Stirling number of the second kind
satisfy:

Sn,k)=Sn—1,k—1)+kSn—1k).

The Stirling number of the 2nd kind
counts the number of (unordered) partitions of
n| into k blocks.

Qrdinal(@?ﬁ) = k!S(n, D
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| g-Stirling. numbers

g-Integers and ¢-factorials
S, =1+q+q¢+ - +q,
& [n],] = [n]o[n —1]g--- 1]

The g¢-Stirling number S,(n, k) of the second
kind satisfy:

Sq(n, k) = qk_lsq(n — 1,k —1) 4 [k]gSe(n — 1, k).

where S,(n, k) = d,, if n =0 o0or k = 0. (Carlitz)




| Table

The first few values of the ¢-Stirling numbers
Sq(n, k) read



The first few values of the ¢-Stirling numbers
Sq(n, k) read

n\ k|0 1 2 3
1 1
2 |1 q
3 |1 2q + 2¢° q’
4 |1 3¢+5¢°+3¢ 3¢°+5q*+3¢ ¢°
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Definition 1 (Steingrimsson) A statistic ST AT
on ordered partitions Is said Euler-Mahonian if

> T = [K]!Sy(n, k).
TeOPE

Steingrimsson .

Find Euler-Mahonian statistics on
ordered partitions.
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| Steingrimsson’s Conjecture

Steingrimsson defines a system of statistics:

ros, rob, rcs, rcb, lob, los, lcs, Icb, Isb,
rsb, blnv, inv, cinv.

Conjecture 2 (Steingrimsson, 1997) The
following combinations of SYSTEM

mak + bInv, Imak’+ blnv, cinvLSB,
mak’ + blnv , Imak+ blnv ,

are Euler-mahonian on OP. I
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Singleton, Opener, Closer, Transier

Given an ordered partition 7 in OP”, each entry
of 7 Is divided into four classes:

x singleton: an entry of a singleton block;

*x opener: the smallest entry of a
non-singleton block;

x closer: the largest entry of a non-singleton
block;

* transient: none of the above.
The above sets are denoted by O(x), C(7), S(7)

and 7 (), respectively. I
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I Example

We can classify each entry of an ordered
partition into four categories.

if m={35} — {246} — {1} — {78},
* singletons: 1.
* openers: 2,3,/.
* closers: 5.6,8.
* transients: 4.

S(m)={1}, O(nr) =12,3,7}, C(w) = {5,6, 8},

T(m) =14}, I
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I ros (right-opener-small)

Let w; denote the block index containing ¢,
namely the integer j such that: € B;.
ros (right-opener-small)

ros(m) = #{j € (OUS)(7)|i > j, w; > w;},

where (O U S)(m) = O(m) U S(m).

68 — 5 — 147 — 39 — 2

rosi_:44/3/022/11/0 I

ros(m) = 17



| Other Statistics

rob (right-opener-big)

rob;(m) = #{j € (OUS)(m) |1 < J, wj > w;},

where (O U S)(7) = O(w) U S(m).

T= 68 — 5 — 147 — 39 — 2
rob;: 00 / 0 / 200 / 00 / O

rob(m) = 2
—
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rcs (right-closer-small)

resi(m) = #{J € (CUS)(m) |4 > J, w; > w;f,

where (CUS)(m) = C(m) US(m).

T= 68 — 5 — 147 — 39 — 2
res;: 23 / 1 / 011 / 11 / O

rcs(m) = 10
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rcb (right-closer-big)

reh(m) = #{j € (CUS)(m) | i < j, wj > w;},

where (CU S)(w) = C(mw) U S(m).

T= 68 — 5 — 147 — 39 — 2
rch;: 21 / 2 / 211 / 00 / 0

rch(r) = 9
N
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los (left-opener-small)

los;(m) = #{j € (OUS)(7)|i > j, w; < w],

where (O U S)(r) = O(r) U S(r).

T= 68 — 5 — 147 — 39 — 2
los,: 00 / O / 002 / 13 / 1

los(m) = 7
—
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lob;(m) = #{j € (OUS)(m)|i < j, wj < w;},

where (O U S)(7) = O(w) U S(m).

T= 68 — 5 — 147 — 39 — 2
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lob(wr) = 10
N
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Ics (left-closer-small)

lesi(m) = #{j € (CUS)(7) |1 > j, wj <w;},

where (C U S)(r) = C(r) U S(n).

T= 68 — b — 147 — 39 — 2
les;: 00 / 0 / 001 / 03 / O

les(m) = 4
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Icb (left-closer-big)

lebj(m) = #{j € (CUS)(m) |1 < J, wj < w},

where (CU S)(w) = C(mw) U S(m).

T= 68 — 5 — 147 — 39 — 2
Ich;: 00 / 1 / 221 / 30 / 4

lcb(r) = 13
N
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rsb (right-small-big)

rsb;(7) Is the number of blocks B in 7 to the
right of the block containing ¢ such that the
opener of B Is smaller than ¢ and the closer of
B IS greater than .

7= 68 — 5 — 147 — 39 — 2
rsh;: 21 / 2 / 01 / 00 / O

rsb(r) = 7
—
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Isb (left-small-big)

Isb;(7) is the number of blocks B in 7 to the left
of the block containing : such that the opener
of B Is smaller than : and the closer of B Is
greater than <.
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Isb (left-small-big)

Isb; () is the number of blocks B in 7 to the left
of the block containing : such that the opener
of B Is smaller than : and the closer of B Is
greater than <.

7= 68 — 5 — 147 — 39 — 2
Isb;: 00 / 0 / 001 / 10 / 1
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Isb (left-small-big)

Isb; () is the number of blocks B in 7 to the left
of the block containing : such that the opener
of B Is smaller than : and the closer of B Is
greater than <.

T= 68 — 5 — 147 — 39 — 2
Isb;: 00 / 0 / 001 / 10 / 1

Ish(r) = 3
—
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If © € OP}, there is a unique permutation o in .S;

such that
T = Bs1) — Bs) — - — Bo(),
where By — By — --- — By, Is a partition.
We set

perm(m) = o,

Inv T = 1nv o,

cinv o = (g) — inv o.
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Let 7 = B, — By — --- — By, be in OP~.
A partial order on blocks:

B; > B, if all the letters of B; are greater than
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| Block Operations

Let 7 = B, — By — --- — By, be in OP~.
A partial order on blocks:

B; > B, if all the letters of B; are greater than
those of B;; in other words, If the opener of
B, Is greater than the closer of B,.
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| Block Operations

Let 7 = B, — By — --- — By, be in OP~.
A partial order on blocks:

B; > B, if all the letters of B; are greater than
those of B;; in other words, If the opener of
B, Is greater than the closer of B,.

T= 68 — 5 — 147 — 3G — 2
{3,9}>{2}.| I
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| Block Operations

Let 7 = B, — By — --- — By, be in OP~.
Block inversion:

A block inversion in 7 is a pair (7, j) such that
. < j and B; > B;. We denote by blnv 7 the
number of block inversions in 7. We also set
cblnv = (g) — blnv.

ﬂ6ﬁ<473 D

blnv m =4, cblnv 7 = (g) — 4 = 0.




| Block Operations

Let m = B, — By — --- — By, be in OPF.
Block descent:

A block descent in 7 Is a block B; such that 2
and B; > Bz’—|—1-
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Let m = B, — By — --- — By, be in OPF.
Block descent:

A block descent in 7 Is a block B; such that 2
and B; > Bz’—|—1-
=68 — 5 — 147 — 39 — 9

‘ {6 8} > {5}, {39} > {2}. I
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| Block Operations

Let m = B, — By — --- — By, be in OPF.
Block descent:

The Dblock block major index, denote by
bMajm, IS the sum of indices of block de-

scents in 7. We also set cbMaj = (5) — bMayj.

T—= 68 — 5 — 147 — 39 — 9

1 2 3 4 D

bMaj m=1+4=5,cbMaj 7= (}) =5 =5. I
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Definition [Steingrimsson (Foata & Zeilberger)]

Proposition 3 (Ksavrelof & Zeng)

mak = Imak’ and mak’ = lmak.
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cinvloB,.cmajlLoB

Definition
_et OP* be the set of all ordered partitions with &
nlocks.

T= 68 — 5 — 147 — 39 — 2

Isbm =3, cblnvm = 6, cbMajm = 5. I




cinvloB,.cmajlLoB

Definition
_et OP* be the set of all ordered partitions with &
nlocks.

T= 68 — 5 — 147 — 39 — 2

cinvLSBm =3+ 6 + (3) = 19.




cinvloB,.cmajlLoB

Definition
_et OP* be the set of all ordered partitions with &
nlocks.

T= 68 — 5 — 147 — 39 — 2

cinvLSBm =346+ (5) = 19, I
cmajLSBm =3+ 5 + (g) = 18.




| Generating Functions

Consider the following generating functions of
OP*:



| Generating Functions

Consider the following generating functions of
OP*:

or(a; @, y,t, u)
_ E aj(mak—i—blnv)w ycvaSB mginv T ciny WCL’W”

T eOpk

where || = n if 7 is an ordered partition of [n].

|



| Generating Functions

Consider the following generating functions of
OP*:

wk(aa T,y,t, U)
_ E : aj(lmakqtblnv)ﬂ ycvaSB Ty T, cinv CL‘W‘,

T cOpF

where || = n if 7 is an ordered partition of [n].

|



| Main Result

Definition
nl,, = L—C : p g-integer




| Main Result

Definition
npg =" 1 psg-integer

n)pg! = g2 1nlpg o p, g-factorial




| Main Result

Definition

n

P —q
pP—q

gt = 110200 1nlpg © P, g-factorial

n

- p, g-Integer

Mp,q =

= "pg! -+ p, g-binomial coefficient

kdp,q klpqlln—Fklp,q!




| Main Result

One of the main results of our paper Is the
following theorem:
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Theorem We have




| Main Result

One of the main results of our paper Is the
following theorem:

Theorem We have

0" () ) (Kl
[1,(1 - alil.,)

)
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Let m = B, — By — --- — By, be in OPF.



| Trace

Let m = B, — By — --- — By, be in OPF.

The restriction B; N || of a block B, on [i] is
said to be active if B, # [i| and B; N [i] # 0.




| Trace

Let m = B, — By — --- — By, be in OPF.

The restriction B; N || of a block B, on [i] is
said to be complete if 5, C |i].




| Trace

Let m = B, — By — --- — By, be in OPF.

Ti(m) = B1(< 1) — Bo(< 1) — - — Br(< 1),

where B;(< i) = B;N|[:], while empty sets are
omitted. The sequence (7;(m))1<i<n IS called
the trace of the ordered partition .
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| Trace

Let® = B, — By —--- — B;, be in OPF.

Ti(m) = B1(< 1) — Bo(< 1) — - — Br(< 1),

where B;(< i) = B;N|[:], while empty sets are
omitted. The sequence (7;(m))1<i<n IS called
the trace of the ordered partition .

Example

T= 68 — 5 — 147 — 39 — 2
Tl(ﬂ'): 1



| Trace

Let® = B, — By —--- — B;, be in OPF.

Ti(m) = B1(< 1) — Bo(< 1) — - — Br(< 1),

where B;(< i) = B;N|[:], while empty sets are
omitted. The sequence (7;(m))1<i<n IS called
the trace of the ordered partition .

Example

T= 68 — 5 — 147 - 39 — 2
TQ(?T): 1 — 2



| Trace

Let® = B, — By —--- — B;, be in OPF.

Ti(m) = B1(< 1) — Bo(< 1) — - — Br(< 1),

where B;(< i) = B;N|[:], while empty sets are
omitted. The sequence (7;(m))1<i<n IS called
the trace of the ordered partition .

Example

7= 68 — 5 — 147 — 39 — 2
Ty(m) = 1 -3 -2



| Trace

Let® = B, — By —--- — B;, be in OPF.

Ti(m) = B1(< 1) — Bo(< 1) — - — Br(< 1),

where B;(< i) = B;N|[:], while empty sets are
omitted. The sequence (7;(m))1<i<n IS called
the trace of the ordered partition .

Example

7= 68 — 5 — 147 — 39 — 2
Ty(m) = 14 — 3 — 2



| Trace

Let® = B, — By —--- — B;, be in OPF.

Ti(m) = B1(< 1) — Bo(< 1) — - — Br(< 1),

where B;(< i) = B;N|[:], while empty sets are
omitted. The sequence (7;(m))1<i<n IS called
the trace of the ordered partition .

Example

7= 68 — 5 — 147 — 39 — 2
Ty(7) = 5 — 14 — 3 — 2



| Trace

Let® = B, — By —--- — B;, be in OPF.

Ti(m) = B1(< 1) — Bo(< 1) — - — Br(< 1),

where B;(< i) = B;N|[:], while empty sets are
omitted. The sequence (7;(m))1<i<n IS called
the trace of the ordered partition .

Example

T= 68 — 5 — 147 — 39 — 2
lg(mr)= 6 —>H — 14 — 3 — 2



| Trace

Let® = B, — By —--- — B;, be in OPF.

Ti(m) = B1(< 1) — Bo(< 1) — - — Br(< 1),

where B;(< i) = B;N|[:], while empty sets are
omitted. The sequence (7;(m))1<i<n IS called
the trace of the ordered partition .

Example

T= 68 — 5 — 147 — 39 — 2
I7(mr)=6 — 5 — 147 — 3 — 2



| Trace

Let® = B, — By —--- — B;, be in OPF.

Ti(m) = B1(< 1) — Bo(< 1) — - — Br(< 1),

where B;(< i) = B;N|[:], while empty sets are
omitted. The sequence (7;(m))1<i<n IS called
the trace of the ordered partition .

Example

7= 68 — 5 — 147 — 39 — 2
Ty(7)= 68 — 5 — 147 — 3 — 2



| Trace

Let® = B, — By —--- — B;, be in OPF.

Ti(m) = B1(< 1) — Bo(< 1) — - — Br(< 1),

where B;(< i) = B;N|[:], while empty sets are
omitted. The sequence (7;(m))1<i<n IS called
the trace of the ordered partition .

Example

7= 68 — 5 — 147 — 39 — 2
To(7)= 68 — 5 — 147 — 39 — 2



| Trace

Let® = B, — By —--- — B;, be in OPF.

Ti(m) = B1(< 1) — Bo(< 1) — - — Br(< 1),

where B;(< i) = B;N|[:], while empty sets are
omitted. The sequence (7;(m))1<i<n IS called
the trace of the ordered partition .

Definition

r; = gcomplete blocks of 7} () : abscissa
y; = factive blocks of T;(m) : height
Letus call {(x;,v;)}1<;=, the form of x.




m={6} —{3,5,7} — {1,4} — {2,8}

surjection

»-th trace of 7 - form of 7
1-th trace of =
{1,---}
Aa(:tive blocks
3
2
I
1T 2371

complete blocks I



m={6} —{3,5,7} — {1,4} — {2,8}

| surjection
»-th trace of 7 - form of 7
2-th trace of
{1,---}—{2,---}
Aa(:tive blocks
3
P
I
T 231

complete blocks I



m={6} —{3,5,7} — {1,4} — {2,8}

surjection

»-th trace of 7 - form of &
3-th trace of

{37...}_{17...}_{2’...}

active blocks

20
I

12327

complete blocks I




m={6} —{3,5,7} — {1,4} — {2,8}

surjection

»-th trace of 7 - form of &
4-th trace of

{37...}_{174}_{27...}

active blocks

20
I

12327

complete blocks I




m={6} —{3,5,7} — {1,4} — {2,8}

surjection

»-th trace of 7 - form of &
5-th trace of

{3757...}_{174}_{27...}

active blocks

20
I

12327

complete blocks I




m={6} —{3,5,7} — {1,4} — {2,8}

surjection

»-th trace of 7 - form of &
6-th trace of

{6}_{3757"'}_{174}_{27”'}

active blocks

20
I

12327

complete blocks I




m={6} —{3,5,7} — {1,4} — {2,8}

surjection

»-th trace of 7 - form of &
7-th trace of

{6}_{37577}_{174}_{27”'}

active blocks

20
IC

12327

complete blocks I




m={6} —{3,5,7} — {1,4} — {2,8}

surjection

»-th trace of 7 - form of &
8-th trace of

{6} o {37 57 7} o {174} o {27 8}

active blocks

2

IC
123

complete blocks I



m={6} —{3,5,7} — {1,4} — {2,8}

surjection

»-th trace of 7 - form of &

Thus the following path correspond to the orderd
partition 7 = {6} — {3,5,7} — {1,4} — {2,8}.

active blocks

2

I
7123 :

complete blocks I




A —

m={6} —{3,5,7} — {1,4} — {2,8}.




| Choice

m={6} —{3,5,7} — {1,4} — {2,8}.
TG(W) :{6}_{3757'”}_{174}_{2>”'}'




| Choice

m={6} —{3,5,7} — {1,4} — {2,8}.
TG(W) :{6}_{3757'”}_{174}_{27'”}'

Form of Ts(7) = (2, 2)




| Choice

T = {6} — {3,5,7} — {1,4} — {2,8}.
TG(W) :{6}_{3757”'}_{174}_{27'”}'

Form of Ts(7) = (2, 2)

possibilities to open a new block or
insert a singleton into ().

{6} o {3757'”} o {174} o {27”'}

I I I I
|



| Choice

T = {6} — {3,5,7} — {1,4} — {2,8}.
TG(W) :{6}_{3757”'}_{174}_{27'”}'

Form of Ts(7) = (2, 2)

possiblilities to close an active block or add a
transient into 7g().

{6} o {3757"'} o {174} o {27'”}
I 1

|



| Path Diagram

Definition
A path diagram of depth & and length n



| Path Diagram

Definition
A path diagram of depth i and length » Is a pair
(w,§):

x w is a path in N* of length n from (0,0) to
(k,0), whose steps are

North, East, South-East or Null |

B




| Path Diagram

Definition
A path diagram of depth i and length » Is a pair
(w,§):

*x & = (&)1<i<n 1S @ Sequence of integers

B



| Path Diagram

Definition
A path diagram of depth i and length » Is a pair
(w,&):
*x & = (&)1<i<n 1S @ Sequence of integers such
that:

® ‘1 < ¢ < qI If the +-th step Is Null or

South-East, of height ¢,

B



I Path Diagram

Definition
A path diagram of depth i and length » Is a pair
(w,§):

*x & = (&)1<i<n 1S @ Sequence of integers such
that:

® ‘1 < ¢ < qI If the +-th step Is Null or

South-East, of height ¢,
D 1< <p+g+ 1)ifthe i-th step is
North or East, of abscissa p and height g.

B




m={6} —{3,5,7} — {1,4} — {2,8}

| bijection _
i-th trace of 7 - - path diagram of =
1-th trace of =
{1,---}
‘ 51 - 1 I Aac:tive blocks
3
2
I

B 1231 I
complete blocks



m={6} —{3,5,7} — {1,4} — {2,8}

| bijection _
i-th trace of 7 - - path diagram of =
2-th trace of &
{1,---}—{2,---}
‘ 52 - 2| Aac:tive blocks
3
29
I

B 1231 I
complete blocks



m={6} —{3,5,7} — {1,4} — {2,8}

bijection

i-th trace of 7 - - path diagram of =
3-th trace of «

(3, —{1,---}—{2,.--)
‘ £y = 1| Slactive blocks

20
I

B 1231 I
complete blocks




m={6} —{3,5,7} — {1,4} — {2,8}

bijection

»-th trace of 7
4-th trace of

{3,---}—{1,4} —{2,---}

‘&:QI

path diagram of 7

active blocks

20
IC

B 1234 - I
complete blocks



m={6} —{3,5,7} — {1,4} — {2,8}

bijection

i-th trace of 7 - - path diagram of =
5-th trace of «

{3757...}_{174}_{27...}
‘ 55 - 1| active blocks

20
I

B 1231 I
complete blocks




m={6} —{3,5,7} — {1,4} — {2,8}

bijection

i-th trace of 7 - - path diagram of =
6-th trace of «

{6}_{3757"'}_{174}_{27”'}
‘ 6 = 1| active blocks

20
I

B 1231 I
complete blocks




m={6} —{3,5,7} — {1,4} — {2,8}

bijection

i-th trace of 7 - - path diagram of =
7-th trace of «

{6} B {37577} o {174} o {27"'}
‘ £ = 1| active blocks

20
IC

B 1231 I
complete blocks




m={6} —{3,5,7} — {1,4} — {2,8}

bijection

i-th trace of 7 - - path diagram of =
8-th trace of «

{6} B {37 57 7} o {174} o {27 8}
‘ £ = 1| active blocks

20

IC
B 123 I
complete blocks




m={6} —{3,5,7} — {1,4} — {2,8}

bijection

i-th trace of 7 - - path diagram of =

Thus we obitain
w = (N,N,N, S-E, Null, E, S-E, S-E).
f: (172717271717171) active blocks

2

I
B 123 ’ I
complete blocks




| The digraph D,

k@ ol 01 p+q+1]., ifNorE;
\ 3P [Q]’y,é

L_1 ’@\ If Null or S-E.

Ve

33

B og,
G

0
O 1 2 3 k—1k

/

|



| The digraph D;

alP0?p+q+1]., ifNorE;

kﬁ ( %ﬁ
\ { 5P [q] if Null or S-E.
&




| The digraph D,

—

(a) If the ¢-th step of w Is North (resp. East),
theni € O(x) (resp. : € S(7)) and

(les+res)i(m) = pi_1, losi(m) =& — 1,
(Isb+18b)i(m) = gi—1, T08i(T) =pPic1 +qi1 +1—§&;

|



| The digraph D,

—

(b) If the i-th step of w Is South-East (resp. Null),
then i € C(r) (resp. » € 7(m)) and

(les+res);(m) = pi1, Isbi(m) =& — 1,
(18b+f8b)i(ﬂ) — ;-1 — 1, YSbi(ﬂ') — ;-1 — 52

|



| The digraph D,

Qk(aa a, 6777 57 g, 1, 9) c=

Z a(lchrrcs)(OUS)ﬂ 6(lcs+rcs)(TUC)7T /yrsb(TUC)W

rcOPF

> 5lsb(TUC)7r gros(OUS)w 77108((9US)7T Q(ISbJrrsb)(@US)WCL\W\

= Z val(w)a!”

weDy: (0,0)—>(O,k’)

|



| Transter-Matrix Method

e D= (V,F)adigraph.
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e D= (V,F)adigraph.
e val : I/ — R a valuation.



| Transter-Matrix Method

e D= (V,F)adigraph.
e val : I/ — R a valuation.

Let A be the adjacency matrix of D, I.e

Aij — U@l(’l}@', Uj).



| Transter-Matrix Method

e D= (V,F)adigraph.
e val : I/ — R a valuation.

Let A be the adjacency matrix of D, I.e

Aij — U@l(’l}@', Uj).




| Transfer-Matrix Method

e D= (V,F)adigraph.
e val : I/ — R a valuation.

Let A be the adjacency matrix of D, I.e

Aij — U@l(?}@', Uj).

t2
(e [0 0 s )
st \s°. A= st t2 0

. . \t 330/ I



| Transter-Matrix Method

A walk of length k£ I1s a sequence
w = v;,v;, -..v;, Of points of D such
that (v;.,v;,_,) € E.




| Transfer-Matrix Method

A walk of length k£ I1s a sequence
w = v;,v;, ...v; Of points of D such
that (v;.,v;,_,) € E.

Theorem

- det(] — zA; 9,1

WU;—Vy




| Transfer-Matrix Method

A walk of length k£ I1s a sequence
w = v;,v;, ...v; Of points of D such
that (v;.,v;,_,) € E.

Example
t2
(e [0 0 s )
st \s3. . A=1| st t2 0
. . \ t s O/

Wy = V3V9V2V1V3Vq walk of Iength ‘U]O’ — 5 and
val(wy) = s° X t? x st x s x t = st I



| Transfer-Matrix Method

A walk of length k£ I1s a sequence
w = v;,v;, ...v; Of points of D such
that (v;.,v;,_,) € E.

Example

det([2 —ZA2°3 1)
/ || _ )
2 vl = =T A

zs(1 — 2t?)

T + 238%t + z2ts — 2313s I

W:V1—7Vs3




| Determinant Expression

Qk(a;t17t27t37t47t57t67t7) — Z Ua,l(w)a,’w’
weDy:(0,0)—(0,k)

Transfer-matrix method —

141, det([ — @Ak; N, 1)
det( — aAy)

— (-1)




| Determinant Expression

For instance, when k& = 2, we have

/ Ol 1 1 0 0 0 \
011 1|t7[2]tst5 t7(2]15.26 0
010 0 0 t1 2]t te 1 [2)t5 16
Ay =
010 0 [2], 215,14 0
010 O 0 to 2
\ 010 O 0 0 0 /



| Determinant Expression

det(lg — CLAQ; 6, 1)

Q) = ==t — ady)

_ a2[2]t5,t6(at2t7 =+ tl(l — a[Q]t&u))
(1 —a)(1 —al2],.,)(1 —at2)

— |



| Generating Function

In order to prove Steingrimsson’s conjecture, it is
sufficient to evaluate the following special cases

of Qk(a; t):

fk(aa £z, yata U) — Qk(aa £z, T, T, yvtaua y)7
gk(aa €, yata U) — Qk(aa 17 £, 17 LY, taua y)




| Generating Function

The goal of our proof is the following identity:

akaj(g) El !
fk(@;ﬂf,y,t,U) — L [ ]tv

[[i=:(1 = aliley)




| Generating Function

Let A, and A} be the matrices obtained from A
by making the substitutions. Let

M, = I, — CLAA;c and N, = [ — CLAZ

Then we derive from the above formula that

(—1)1+n’“ det(Mk; Nk, 1)
det Mk 7
(—1)1+nk det(Nk; Nk, 1)

det Nk . I

fk(aa £z, yata U) —




I Mautrix. M.

Example
k=1
/1 —a —a\
Ml— 01— —a
\o| o 1




I Mautrix. M.

Example & =2

/ 1 —a —a 0 0 0
0 1—a —a| —ay(t+uw) —ay(t+ u) 0
0 0 1 0 —azx(t+u) —az(t+u)
Moy =
0 0 0 |1—a(lz+y) —alz+y) 0
0 0 0 0 1 —ax —ax
\ 0 0 0 0 0 1 ) I




I Mautrix. M.

The matrix M, 1s defined inductively as follows:

Mgy | My

Oit+1m,, | Mi—1

Here M;_; is the (k+1) x (k+ 1) matrix

N

M1 = (0ij — az' ' 41 — iy (i + 5i+1aj))1§7j,j§k+1

|



I Mautrix. M.

The matrix M, 1s defined inductively as follows:

Mgy | My

Oit+1m,, | Mi—1

Here M;_; is the n;_; x (k + 1) matrix

Onk—27k+1

M4 = -
My

|



I Mautrix. M.

The matrix M, 1s defined inductively as follows:

Mgy | My

Oit+1m,, | Mi—1

with the k£ x (k + 1) matrix

Mk—l — (—&xi_lyk_i[k]t,u@ij T 5i+1aj))1§i§k,1§j§k+1 '

|



I Mautrix. M.

The matrix M, 1s defined inductively as follows:

My | My
M, — —
Oit+1m,, | Mi—1

Theorem

det(My; ng, 1) = (—=1) &bz () [E],!

X H(l —az'[m — i+ 1],,).

m=1 1=1



I Mautrix. M.

The matrix M, 1s defined inductively as follows:
My | My
M, = - .
Oit+1m,, | Mi—1

Al B
det = det A - det (D — CA_lB) .

|




I Matrix N,

Example & =2

//\ 4 —a 0 0 0 \

0 A—a -—a —ay[2]¢,u —ay|[2]t,u 0

0 0 A 0 —CL[Q]t u —a[Q]t u
NQ()\, CL) —

0 0 0 AX—a(l4+zy) —a(l+ zy) 0

0 0 0 0 A —azx —ax




I Matrix N,

The matrix N Is defined inductively as follows:

Ni-1(Ma) | Np1(X, a)
Nk()‘a a’) — -
Ok—l—l,nk_l Nk—l()\a CL)

Here Ni_1(), a) is the (k + 1) x (k + 1) matrix

j/\\fn—l()\v CL)
— (Aélj — aa:i_l[n +1— i]xy(%‘ + 5i+1ﬂ') )1<i,j<n+1

|



I Matrix N,

The matrix N Is defined inductively as follows:

Ni-1(Ma) | Np1(X, a)
Nk()‘a a’) — s
Ok—l—l,nk_l Nk—l()\a CL)

Here Ni_1(\ a) is the n,_; x (k + 1) matrix

O”nk_g,]{—l—l
Nj-1

|



I Matrix N,

The matrix N Is defined inductively as follows:

Ni-1(Ma) | Np1(X, a)
Nk()‘a a’) — R
Ok—l—l,nk_l Nk—l()\a CL)

with the £ x (k + 1) matrix

Nk—l — (—ayk_i[n]t,u ' (5@'3' T 5i+1vj))1§i§/€,1§j§/€+l '

|



I Matrix N,

The matrix N Is defined inductively as follows:

Ni-1(Ma) | Np1(X, a)
Nk()‘a a) — -
Ok—l—l,nk_l Nk—l()\a CL)

Proof
Find the eigenvector of each eigenvalue.

|



| Eigenvectors




| Eigenvectors

A0, k[, = [nlg — " [k

| fO0 <k <n,
0 otherwise.




| Eigenvectors

n ’Ff;ol]M[qr |f0<k<n
o } [ =5 E]gr -
k Lgr 0 otherwise.
Example
& |3, 1] , =1+ qgr+ ¢r* — ¢
3 _ (4gr+¢*r?)(+gr4¢°r’—¢*)
* } 2 [q,r - (1—|—qr) |

B



| Eigenvectors

Define the row vectors X™' of degree n;, as
follows: For1 <:< k+1land1 <j <y, the

(i(i;” | j)th entry of X™' is equal to

R

i — ]tu{ i— 1 } } m {
i—m =l m+1-1],, Jm+l-7|,,

B




| Eigenvectors

Let k be a positive integer. Let m and [ be
positive integers such that0 <m < k —1 and
1 <[ <k—m. Then we have

X7 NN a) = (A — ax!Hml,,) X7




| Conjecture

Consider the following two generating functions
of ordered partitions with £ > 0 blocks:

. . E mak +bMaj)r  cmaijlLSB#w |7

gk(a’axay) o .73( J) y J CL‘ ‘7
e OpF

nk(a; T, y) - E : x(lmakerMaJ)W ycmaJLSBW CL‘W‘.
e OpF

|



| Conjecture

Conjecture
For k£ > 0, the following identities would hold:

gk( 9 7y) Hle(l B &[i]xjy)a
() ) K]
) =0

[T, (1 —alils,)

|
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| The End.of Talk

‘ Thank you! |
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