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Ordered Partitions

An ordered partition of a set S into k blocks is a
sequence B1 −B2 − · · · −Bk such that:

♠ Bi 6= ∅ , 1 ≤ i ≤ k;
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Ordered Partitions

An ordered partition of a set S into k blocks is a
sequence B1 −B2 − · · · −Bk such that:

♠ Bi 6= ∅ , 1 ≤ i ≤ k;

♠ Bi ∩Bj = ∅ , 1 ≤ i, j ≤ k;
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Ordered Partitions

An ordered partition of a set S into k blocks is a
sequence B1 −B2 − · · · −Bk such that:

♠ Bi 6= ∅ , 1 ≤ i ≤ k;

♠ Bi ∩Bj = ∅ , 1 ≤ i, j ≤ k;

♠
⊔k

i=1Bi = S.
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Ordered Partitions

An ordered partition of a set S into k blocks is a
sequence B1 −B2 − · · · −Bk such that:

♠ Bi 6= ∅ , 1 ≤ i ≤ k;

♠ Bi ∩Bj = ∅ , 1 ≤ i, j ≤ k;

♠
⊔k

i=1Bi = S.

Set [n] := {1, . . . , n}.
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Ordered Partitions

An ordered partition of a set S into k blocks is a
sequence B1 −B2 − · · · −Bk such that:

♠ Bi 6= ∅ , 1 ≤ i ≤ k;

♠ Bi ∩Bj = ∅ , 1 ≤ i, j ≤ k;

♠
⊔k

i=1Bi = S.

Set [n] := {1, . . . , n}.

π = {2, 9} − {3} − {1, 4, 8} − {5, 6} − {7}

is an ordered partition of [9] with 5 blocks.
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Stirling Number of the 2nd kind

The Stirling number S(n, k) of the second kind
satisfy:
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Stirling Number of the 2nd kind

The Stirling number S(n, k) of the second kind
satisfy:

S(n, k) = S(n− 1, k − 1) + k S(n− 1, k).
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Stirling Number of the 2nd kind

The Stirling number S(n, k) of the second kind
satisfy:

S(n, k) = S(n− 1, k − 1) + k S(n− 1, k).

The Stirling number S(n, k) of the 2nd kind
counts the number of (unordered) partitions of
[n] into k blocks.
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Stirling Number of the 2nd kind

The Stirling number S(n, k) of the second kind
satisfy:

S(n, k) = S(n− 1, k − 1) + k S(n− 1, k).

The Stirling number S(n, k) of the 2nd kind
counts the number of (unordered) partitions of
[n] into k blocks.

Definition
OPk

n := {ordered partitions of [n] with k blocks}.

Euler-Mahonian Statistics of Ordered Partitions – p.3/35



Stirling Number of the 2nd kind

The Stirling number S(n, k) of the second kind
satisfy:

S(n, k) = S(n− 1, k − 1) + k S(n− 1, k).

The Stirling number S(n, k) of the 2nd kind
counts the number of (unordered) partitions of
[n] into k blocks.

cardinal(OPk
n) = k!S(n, k).
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q-Stirling numbers

q-integers and q-factorials

♣ [n]q = 1 + q + q2 + · · · + qn−1,
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q-Stirling numbers

q-integers and q-factorials

♣ [n]q = 1 + q + q2 + · · · + qn−1,

♣ [n]q! = [n]q[n− 1]q · · · [1]q.
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q-Stirling numbers

q-integers and q-factorials

♣ [n]q = 1 + q + q2 + · · · + qn−1,

♣ [n]q! = [n]q[n− 1]q · · · [1]q.

The q-Stirling number Sq(n, k) of the second
kind satisfy:

Sq(n, k) = qk−1Sq(n− 1, k− 1) + [k]qSq(n− 1, k).

where Sq(n, k) = δn k if n = 0 or k = 0. (Carlitz)
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Table

The first few values of the q-Stirling numbers
Sq(n, k) read
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Table

The first few values of the q-Stirling numbers
Sq(n, k) read

n \ k 0 1 2 3
1 1
2 1 q

3 1 2q + 2q2 q3

4 1 3q + 5q2 + 3q3 3q3 + 5q4 + 3q5 q6

Euler-Mahonian Statistics of Ordered Partitions – p.5/35



Euler-Mahonian Statistics

Definition 1 (Steingrímsson) A statistic STAT
on ordered partitions is said Euler-Mahonian if
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Euler-Mahonian Statistics

Definition 1 (Steingrímsson) A statistic STAT
on ordered partitions is said Euler-Mahonian if

∑

π∈OPk
n

qSTAT π = [k]q!Sq(n, k).
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Euler-Mahonian Statistics

Definition 1 (Steingrímsson) A statistic STAT
on ordered partitions is said Euler-Mahonian if

∑

π∈OPk
n

qSTAT π = [k]q!Sq(n, k).

Steingrimsson :
Find Euler-Mahonian statistics on
ordered partitions.
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Steingrímsson’s Conjecture

Steingrímsson defines a system of statistics:

ros, rob, rcs, rcb, lob, los, lcs, lcb, lsb,
rsb, bInv, inv, cinv.
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Steingrímsson’s Conjecture

Steingrímsson defines a system of statistics:

ros, rob, rcs, rcb, lob, los, lcs, lcb, lsb,
rsb, bInv, inv, cinv.

Conjecture 2 (Steingrímsson, 1997) The
following combinations of SYSTEM

mak + bInv , lmak ′ + bInv, cinvLSB,
mak ′ + bInv , lmak + bInv ,

are Euler-mahonian on OP.
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Singleton, Opener, Closer, Transient

Given an ordered partition π in OPk
n, each entry

of π is divided into four classes:

⋆ singleton: an entry of a singleton block;
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Singleton, Opener, Closer, Transient

Given an ordered partition π in OPk
n, each entry

of π is divided into four classes:

⋆ singleton: an entry of a singleton block;

⋆ opener: the smallest entry of a
non-singleton block;

Euler-Mahonian Statistics of Ordered Partitions – p.8/35



Singleton, Opener, Closer, Transient

Given an ordered partition π in OPk
n, each entry

of π is divided into four classes:

⋆ singleton: an entry of a singleton block;

⋆ opener: the smallest entry of a
non-singleton block;

⋆ closer: the largest entry of a non-singleton
block;
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Singleton, Opener, Closer, Transient

Given an ordered partition π in OPk
n, each entry

of π is divided into four classes:

⋆ singleton: an entry of a singleton block;

⋆ opener: the smallest entry of a
non-singleton block;

⋆ closer: the largest entry of a non-singleton
block;

⋆ transient: none of the above.
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Singleton, Opener, Closer, Transient

Given an ordered partition π in OPk
n, each entry

of π is divided into four classes:

⋆ singleton: an entry of a singleton block;

⋆ opener: the smallest entry of a
non-singleton block;

⋆ closer: the largest entry of a non-singleton
block;

⋆ transient: none of the above.

The above sets are denoted by O(π), C(π), S(π)
and T (π), respectively.
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Example

We can classify each entry of an ordered
partition into four categories.
if π = {3 5} − {2 4 6} − {1} − {7 8},

⋆ singletons: 1.
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Example

We can classify each entry of an ordered
partition into four categories.
if π = {3 5} − {2 4 6} − {1} − {7 8},

⋆ singletons: 1.

⋆ openers: 2,3,7.
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Example

We can classify each entry of an ordered
partition into four categories.
if π = {3 5} − {2 4 6} − {1} − {7 8},

⋆ singletons: 1.

⋆ openers: 2,3,7.

⋆ closers: 5,6,8.
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Example

We can classify each entry of an ordered
partition into four categories.
if π = {3 5} − {2 4 6} − {1} − {7 8},

⋆ singletons: 1.

⋆ openers: 2,3,7.

⋆ closers: 5,6,8.

⋆ transients: 4.
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Example

We can classify each entry of an ordered
partition into four categories.
if π = {3 5} − {2 4 6} − {1} − {7 8},

⋆ singletons: 1.

⋆ openers: 2,3,7.

⋆ closers: 5,6,8.

⋆ transients: 4.

S(π) = {1}, O(π) = {2, 3, 7}, C(π) = {5, 6, 8},
T (π) = {4}.
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ros (right-opener-small)

Let wi denote the block index containing i,
namely the integer j such that i ∈ Bj.
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ros (right-opener-small)

Let wi denote the block index containing i,
namely the integer j such that i ∈ Bj.
ros (right-opener-small)

rosi(π) = #{j ∈ (O ∪ S)(π) | i > j, wj > wi},

where (O ∪ S)(π) = O(π) ∪ S(π).

Euler-Mahonian Statistics of Ordered Partitions – p.10/35



ros (right-opener-small)

Let wi denote the block index containing i,
namely the integer j such that i ∈ Bj.
ros (right-opener-small)

rosi(π) = #{j ∈ (O ∪ S)(π) | i > j, wj > wi},

where (O ∪ S)(π) = O(π) ∪ S(π).

π = 6 8 − 5 − 1 4 7 − 3 9 − 2

rosi : / / / /
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ros (right-opener-small)

Let wi denote the block index containing i,
namely the integer j such that i ∈ Bj.
ros (right-opener-small)

rosi(π) = #{j ∈ (O ∪ S)(π) | i > j, wj > wi},

where (O ∪ S)(π) = O(π) ∪ S(π).

π = 6 8 − 5 − 1 4 7 − 3 9 − 2

rosi : 4 / / / /
Euler-Mahonian Statistics of Ordered Partitions – p.10/35



ros (right-opener-small)

Let wi denote the block index containing i,
namely the integer j such that i ∈ Bj.
ros (right-opener-small)

rosi(π) = #{j ∈ (O ∪ S)(π) | i > j, wj > wi},

where (O ∪ S)(π) = O(π) ∪ S(π).

π = 6 8 − 5 − 1 4 7 − 3 9 − 2

rosi : 4 4 / / / /
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ros (right-opener-small)

Let wi denote the block index containing i,
namely the integer j such that i ∈ Bj.
ros (right-opener-small)

rosi(π) = #{j ∈ (O ∪ S)(π) | i > j, wj > wi},

where (O ∪ S)(π) = O(π) ∪ S(π).

π = 6 8 − 5 − 1 4 7 − 3 9 − 2

rosi : 4 4 / 3 / / /
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ros (right-opener-small)

Let wi denote the block index containing i,
namely the integer j such that i ∈ Bj.
ros (right-opener-small)

rosi(π) = #{j ∈ (O ∪ S)(π) | i > j, wj > wi},

where (O ∪ S)(π) = O(π) ∪ S(π).

π = 6 8 − 5 − 1 4 7 − 3 9 − 2

rosi : 4 4 / 3 / 0 / /
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ros (right-opener-small)

Let wi denote the block index containing i,
namely the integer j such that i ∈ Bj.
ros (right-opener-small)

rosi(π) = #{j ∈ (O ∪ S)(π) | i > j, wj > wi},

where (O ∪ S)(π) = O(π) ∪ S(π).

π = 6 8 − 5 − 1 4 7 − 3 9 − 2

rosi : 4 4 / 3 / 0 2 / /
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ros (right-opener-small)

Let wi denote the block index containing i,
namely the integer j such that i ∈ Bj.
ros (right-opener-small)

rosi(π) = #{j ∈ (O ∪ S)(π) | i > j, wj > wi},

where (O ∪ S)(π) = O(π) ∪ S(π).

π = 6 8 − 5 − 1 4 7 − 3 9 − 2

rosi : 4 4 / 3 / 0 2 2 / /
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ros (right-opener-small)

Let wi denote the block index containing i,
namely the integer j such that i ∈ Bj.
ros (right-opener-small)

rosi(π) = #{j ∈ (O ∪ S)(π) | i > j, wj > wi},

where (O ∪ S)(π) = O(π) ∪ S(π).

π = 6 8 − 5 − 1 4 7 − 3 9 − 2

rosi : 4 4 / 3 / 0 2 2 / 1 /
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ros (right-opener-small)

Let wi denote the block index containing i,
namely the integer j such that i ∈ Bj.
ros (right-opener-small)

rosi(π) = #{j ∈ (O ∪ S)(π) | i > j, wj > wi},

where (O ∪ S)(π) = O(π) ∪ S(π).

π = 6 8 − 5 − 1 4 7 − 3 9 − 2

rosi : 4 4 / 3 / 0 2 2 / 1 1 /
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ros (right-opener-small)

Let wi denote the block index containing i,
namely the integer j such that i ∈ Bj.
ros (right-opener-small)

rosi(π) = #{j ∈ (O ∪ S)(π) | i > j, wj > wi},

where (O ∪ S)(π) = O(π) ∪ S(π).

π = 6 8 − 5 − 1 4 7 − 3 9 − 2

rosi : 4 4 / 3 / 0 2 2 / 1 1 / 0
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ros (right-opener-small)

Let wi denote the block index containing i,
namely the integer j such that i ∈ Bj.
ros (right-opener-small)

rosi(π) = #{j ∈ (O ∪ S)(π) | i > j, wj > wi},

where (O ∪ S)(π) = O(π) ∪ S(π).

π = 6 8 − 5 − 1 4 7 − 3 9 − 2

rosi : 4 4 / 3 / 0 2 2 / 1 1 / 0

ros(π) = 17 Euler-Mahonian Statistics of Ordered Partitions – p.10/35



Other Statistics

rob (right-opener-big)

robi(π) = #{j ∈ (O ∪ S)(π) | i < j, wj > wi},

where (O ∪ S)(π) = O(π) ∪ S(π).

π = 6 8 − 5 − 1 4 7 − 3 9 − 2

robi : 0 0 / 0 / 2 0 0 / 0 0 / 0

rob(π) = 2

Euler-Mahonian Statistics of Ordered Partitions – p.11/35



Other Statistics

rcs (right-closer-small)

rcsi(π) = #{j ∈ (C ∪ S)(π) | i > j, wj > wi},

where (C ∪ S)(π) = C(π) ∪ S(π).

π = 6 8 − 5 − 1 4 7 − 3 9 − 2

rcsi : 2 3 / 1 / 0 1 1 / 1 1 / 0

rcs(π) = 10
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Other Statistics

rcb (right-closer-big)

rcbi(π) = #{j ∈ (C ∪ S)(π) | i < j, wj > wi},

where (C ∪ S)(π) = C(π) ∪ S(π).

π = 6 8 − 5 − 1 4 7 − 3 9 − 2

rcbi : 2 1 / 2 / 2 1 1 / 0 0 / 0

rcb(π) = 9
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Other Statistics

los (left-opener-small)

losi(π) = #{j ∈ (O ∪ S)(π) | i > j, wj < wi},

where (O ∪ S)(π) = O(π) ∪ S(π).

π = 6 8 − 5 − 1 4 7 − 3 9 − 2

losi : 0 0 / 0 / 0 0 2 / 1 3 / 1

los(π) = 7
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Other Statistics

lob (left-opener-big)

lobi(π) = #{j ∈ (O ∪ S)(π) | i < j, wj < wi},

where (O ∪ S)(π) = O(π) ∪ S(π).

π = 6 8 − 5 − 1 4 7 − 3 9 − 2

lobi : 0 0 / 1 / 2 2 0 / 2 0 / 3

lob(π) = 10
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Other Statistics

lcs (left-closer-small)

lcsi(π) = #{j ∈ (C ∪ S)(π) | i > j, wj < wi},

where (C ∪ S)(π) = C(π) ∪ S(π).

π = 6 8 − 5 − 1 4 7 − 3 9 − 2

lcsi : 0 0 / 0 / 0 0 1 / 0 3 / 0

lcs(π) = 4
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Other Statistics

lcb (left-closer-big)

lcbi(π) = #{j ∈ (C ∪ S)(π) | i < j, wj < wi},

where (C ∪ S)(π) = C(π) ∪ S(π).

π = 6 8 − 5 − 1 4 7 − 3 9 − 2

lcbi : 0 0 / 1 / 2 2 1 / 3 0 / 4

lcb(π) = 13
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rsb (right-small-big)

rsb (right-small-big)
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rsb (right-small-big)

rsb (right-small-big)

rsbi(π) is the number of blocks B in π to the
right of the block containing i such that the
opener of B is smaller than i and the closer of
B is greater than i.

π = 6 8 − 5 − 1 4 7 − 3 9 − 2

rsbi : / / / /
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rsb (right-small-big)

rsb (right-small-big)

rsbi(π) is the number of blocks B in π to the
right of the block containing i such that the
opener of B is smaller than i and the closer of
B is greater than i.

π = 6 8 − 5 − 1 4 7 − 3 9 − 2

rsbi : 2 / / / /
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rsb (right-small-big)

rsb (right-small-big)

rsbi(π) is the number of blocks B in π to the
right of the block containing i such that the
opener of B is smaller than i and the closer of
B is greater than i.

π = 6 8 − 5 − 1 4 7 − 3 9 − 2

rsbi : 2 1 / / / /
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rsb (right-small-big)

rsb (right-small-big)

rsbi(π) is the number of blocks B in π to the
right of the block containing i such that the
opener of B is smaller than i and the closer of
B is greater than i.

π = 6 8 − 5 − 1 4 7 − 3 9 − 2

rsbi : 2 1 / 2 / / /
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rsb (right-small-big)

rsb (right-small-big)

rsbi(π) is the number of blocks B in π to the
right of the block containing i such that the
opener of B is smaller than i and the closer of
B is greater than i.

π = 6 8 − 5 − 1 4 7 − 3 9 − 2

rsbi : 2 1 / 2 / 0 / /
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rsb (right-small-big)

rsb (right-small-big)

rsbi(π) is the number of blocks B in π to the
right of the block containing i such that the
opener of B is smaller than i and the closer of
B is greater than i.

π = 6 8 − 5 − 1 4 7 − 3 9 − 2

rsbi : 2 1 / 2 / 0 1 / /
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rsb (right-small-big)

rsb (right-small-big)

rsbi(π) is the number of blocks B in π to the
right of the block containing i such that the
opener of B is smaller than i and the closer of
B is greater than i.

π = 6 8 − 5 − 1 4 7 − 3 9 − 2

rsbi : 2 1 / 2 / 0 1 1 / /
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rsb (right-small-big)

rsb (right-small-big)

rsbi(π) is the number of blocks B in π to the
right of the block containing i such that the
opener of B is smaller than i and the closer of
B is greater than i.

π = 6 8 − 5 − 1 4 7 − 3 9 − 2

rsbi : 2 1 / 2 / 0 1 / 0 /
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rsb (right-small-big)

rsb (right-small-big)

rsbi(π) is the number of blocks B in π to the
right of the block containing i such that the
opener of B is smaller than i and the closer of
B is greater than i.

π = 6 8 − 5 − 1 4 7 − 3 9 − 2

rsbi : 2 1 / 2 / 0 1 / 0 0 /

Euler-Mahonian Statistics of Ordered Partitions – p.12/35



rsb (right-small-big)

rsb (right-small-big)

rsbi(π) is the number of blocks B in π to the
right of the block containing i such that the
opener of B is smaller than i and the closer of
B is greater than i.

π = 6 8 − 5 − 1 4 7 − 3 9 − 2

rsbi : 2 1 / 2 / 0 1 / 0 0 / 0
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rsb (right-small-big)

rsb (right-small-big)

rsbi(π) is the number of blocks B in π to the
right of the block containing i such that the
opener of B is smaller than i and the closer of
B is greater than i.

π = 6 8 − 5 − 1 4 7 − 3 9 − 2

rsbi : 2 1 / 2 / 0 1 / 0 0 / 0

rsb(π) = 7
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lsb (left-small-big)

lsb (left-small-big)
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lsb (left-small-big)

lsb (left-small-big)

lsbi(π) is the number of blocks B in π to the left
of the block containing i such that the opener
of B is smaller than i and the closer of B is
greater than i.
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lsb (left-small-big)

lsb (left-small-big)

lsbi(π) is the number of blocks B in π to the left
of the block containing i such that the opener
of B is smaller than i and the closer of B is
greater than i.

π = 6 8 − 5 − 1 4 7 − 3 9 − 2

lsbi : 0 0 / 0 / 0 0 1 / 1 0 / 1
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lsb (left-small-big)

lsb (left-small-big)

lsbi(π) is the number of blocks B in π to the left
of the block containing i such that the opener
of B is smaller than i and the closer of B is
greater than i.

π = 6 8 − 5 − 1 4 7 − 3 9 − 2

lsbi : 0 0 / 0 / 0 0 1 / 1 0 / 1

lsb(π) = 3
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inv, cinv

If π ∈ OPn
k , there is a unique permutation σ in Sk

such that

π = Bσ(1) −Bσ(2) − · · · −Bσ(k),

where B1 −B2 − · · · −Bk is a partition.
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inv, cinv

If π ∈ OPn
k , there is a unique permutation σ in Sk

such that

π = Bσ(1) −Bσ(2) − · · · −Bσ(k),

where B1 −B2 − · · · −Bk is a partition.

π = 6 8 − 5 − 1 4 7 − 3 9 − 2
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inv, cinv

If π ∈ OPn
k , there is a unique permutation σ in Sk

such that

π = Bσ(1) −Bσ(2) − · · · −Bσ(k),

where B1 −B2 − · · · −Bk is a partition.

π = 6 8 − 5 − 1 4 7 − 3 9 − 2

1 4 7 − 2 − 3 9 − 5 − 6 8

Euler-Mahonian Statistics of Ordered Partitions – p.14/35



inv, cinv

If π ∈ OPn
k , there is a unique permutation σ in Sk

such that

π = Bσ(1) −Bσ(2) − · · · −Bσ(k),

where B1 −B2 − · · · −Bk is a partition.

π = 6 8 − 5 − 1 4 7 − 3 9 − 2

1 4 7 − 2 − 3 9 − 5 − 6 8

perm(π) = 54132
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inv, cinv

If π ∈ OPn
k , there is a unique permutation σ in Sk

such that

π = Bσ(1) −Bσ(2) − · · · −Bσ(k),

where B1 −B2 − · · · −Bk is a partition.

We set
perm(π) = σ,
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inv, cinv

If π ∈ OPn
k , there is a unique permutation σ in Sk

such that

π = Bσ(1) −Bσ(2) − · · · −Bσ(k),

where B1 −B2 − · · · −Bk is a partition.

We set
perm(π) = σ,

inv π = inv σ,
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inv, cinv

If π ∈ OPn
k , there is a unique permutation σ in Sk

such that

π = Bσ(1) −Bσ(2) − · · · −Bσ(k),

where B1 −B2 − · · · −Bk is a partition.

We set
perm(π) = σ,

inv π = inv σ,

cinv σ =
(
n
2

)
− inv σ.
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inv, cinv

If π ∈ OPn
k , there is a unique permutation σ in Sk

such that

π = Bσ(1) −Bσ(2) − · · · −Bσ(k),

where B1 −B2 − · · · −Bk is a partition.

π = 6 8 − 5 − 1 4 7 − 3 9 − 2

perm(π) = 54132

inv(π) = 8
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inv, cinv

If π ∈ OPn
k , there is a unique permutation σ in Sk

such that

π = Bσ(1) −Bσ(2) − · · · −Bσ(k),

where B1 −B2 − · · · −Bk is a partition.

π = 6 8 − 5 − 1 4 7 − 3 9 − 2

perm(π) = 54132

inv(π) = 8

cinv(π) =
(
5
2

)
− 8 = 2
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Block Operations

Let π = B1 −B2 − · · · −Bk be in OPk
n.
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Block Operations

Let π = B1 −B2 − · · · −Bk be in OPk
n.

A partial order on blocks:

Bi > Bj if all the letters of Bi are greater than
those of Bj; in other words, if the opener of
Bi is greater than the closer of Bj.
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Block Operations

Let π = B1 −B2 − · · · −Bk be in OPk
n.

A partial order on blocks:

Bi > Bj if all the letters of Bi are greater than
those of Bj; in other words, if the opener of
Bi is greater than the closer of Bj.

π = 6 8 − 5 − 1 4 7 − 3 9 − 2
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Block Operations

Let π = B1 −B2 − · · · −Bk be in OPk
n.

A partial order on blocks:

Bi > Bj if all the letters of Bi are greater than
those of Bj; in other words, if the opener of
Bi is greater than the closer of Bj.

π = 6 8 − 5 − 1 4 7 − 3 9 − 2

{6, 8} > {5}.
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Block Operations

Let π = B1 −B2 − · · · −Bk be in OPk
n.

A partial order on blocks:

Bi > Bj if all the letters of Bi are greater than
those of Bj; in other words, if the opener of
Bi is greater than the closer of Bj.

π = 6 8 − 5 − 1 4 7 − 3 9 − 2

{6, 8} > {2}.
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Block Operations

Let π = B1 −B2 − · · · −Bk be in OPk
n.

A partial order on blocks:

Bi > Bj if all the letters of Bi are greater than
those of Bj; in other words, if the opener of
Bi is greater than the closer of Bj.

π = 6 8 − 5 − 1 4 7 − 3 9 − 2

{5} > {2}.
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Block Operations

Let π = B1 −B2 − · · · −Bk be in OPk
n.

A partial order on blocks:

Bi > Bj if all the letters of Bi are greater than
those of Bj; in other words, if the opener of
Bi is greater than the closer of Bj.

π = 6 8 − 5 − 1 4 7 − 3 9 − 2

{3, 9} > {2}.
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Block Operations

Let π = B1 −B2 − · · · −Bk be in OPk
n.

Block inversion:

A block inversion in π is a pair (i, j) such that
i < j and Bi > Bj. We denote by bInv π the
number of block inversions in π. We also set
cbInv =

(
k
2

)
− bInv.
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Block Operations

Let π = B1 −B2 − · · · −Bk be in OPk
n.

Block inversion:

A block inversion in π is a pair (i, j) such that
i < j and Bi > Bj. We denote by bInv π the
number of block inversions in π. We also set
cbInv =

(
k
2

)
− bInv.

π = 6 8 − 5 − 1 4 7 − 3 9 − 2

Euler-Mahonian Statistics of Ordered Partitions – p.15/35



Block Operations

Let π = B1 −B2 − · · · −Bk be in OPk
n.

Block inversion:

A block inversion in π is a pair (i, j) such that
i < j and Bi > Bj. We denote by bInv π the
number of block inversions in π. We also set
cbInv =

(
k
2

)
− bInv.

π = 6 8 − 5 − 1 4 7 − 3 9 − 2

bInv π = 4, cbInv π =
(
5
2

)
− 4 = 6.
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Block Operations

Let π = B1 −B2 − · · · −Bk be in OPk
n.

Block descent:

A block descent in π is a block Bi such that i
and Bi > Bi+1.
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Block Operations

Let π = B1 −B2 − · · · −Bk be in OPk
n.

Block descent:

A block descent in π is a block Bi such that i
and Bi > Bi+1.

π = 6 8 − 5 − 1 4 7 − 3 9 − 2

{6 8} > {5}, {3 9} > {2}.
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Block Operations

Let π = B1 −B2 − · · · −Bk be in OPk
n.

Block descent:

The block block major index, denote by
bMaj π, is the sum of indices of block de-
scents in π. We also set cbMaj =

(
k
2

)
−bMaj.
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Block Operations

Let π = B1 −B2 − · · · −Bk be in OPk
n.

Block descent:

The block block major index, denote by
bMaj π, is the sum of indices of block de-
scents in π. We also set cbMaj =

(
k
2

)
−bMaj.

π = 6 8 − 5 − 1 4 7 − 3 9 − 2

1 2 3 4 5

bMaj π = 1 + 4 = 5, cbMaj π =
(
5
2

)
− 5 = 5.
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mak and lmak

Definition [Steingrímsson (Foata & Zeilberger)]

mak = ros + lcs,
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mak and lmak

Definition [Steingrímsson (Foata & Zeilberger)]

mak = ros + lcs,

lmak = n(k − 1) − [los + rcs],
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mak and lmak

Definition [Steingrímsson (Foata & Zeilberger)]

mak = ros + lcs,

lmak = n(k − 1) − [los + rcs],

mak′ = lob + rcb,
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mak and lmak

Definition [Steingrímsson (Foata & Zeilberger)]

mak = ros + lcs,

lmak = n(k − 1) − [los + rcs],

mak′ = lob + rcb,

lmak′ = n(k − 1) − [lcb + rob].
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mak and lmak

Definition [Steingrímsson (Foata & Zeilberger)]

mak = ros + lcs,

lmak = n(k − 1) − [los + rcs],

mak′ = lob + rcb,

lmak′ = n(k − 1) − [lcb + rob].

Proposition 3 (Ksavrelof & Zeng)

mak = lmak ′ and mak ′ = lmak .
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cinvLSB, cmajLSB

Definition
Let OPk be the set of all ordered partitions with k
blocks.

cinvLSB := lsb + cbInv +
(
k
2

)
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cinvLSB, cmajLSB

Definition
Let OPk be the set of all ordered partitions with k
blocks.

cinvLSB := lsb + cbInv +
(
k
2

)

cmajLSB := lsb + cbMaj +
(
k
2

)
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cinvLSB, cmajLSB

Definition
Let OPk be the set of all ordered partitions with k
blocks.

cinvLSB := lsb + cbInv +
(
k
2

)

cmajLSB := lsb + cbMaj +
(
k
2

)

π = 6 8 − 5 − 1 4 7 − 3 9 − 2
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cinvLSB, cmajLSB

Definition
Let OPk be the set of all ordered partitions with k
blocks.

cinvLSB := lsb + cbInv +
(
k
2

)

cmajLSB := lsb + cbMaj +
(
k
2

)

π = 6 8 − 5 − 1 4 7 − 3 9 − 2

lsb π = 3, cbInv π = 6, cbMajπ = 5.
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cinvLSB, cmajLSB

Definition
Let OPk be the set of all ordered partitions with k
blocks.

cinvLSB := lsb + cbInv +
(
k
2

)

cmajLSB := lsb + cbMaj +
(
k
2

)

π = 6 8 − 5 − 1 4 7 − 3 9 − 2

cinvLSB π = 3 + 6 +
(
5
2

)
= 19.
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cinvLSB, cmajLSB

Definition
Let OPk be the set of all ordered partitions with k
blocks.

cinvLSB := lsb + cbInv +
(
k
2

)

cmajLSB := lsb + cbMaj +
(
k
2

)

π = 6 8 − 5 − 1 4 7 − 3 9 − 2

cinvLSB π = 3 + 6 +
(
5
2

)
= 19,

cmajLSBπ = 3 + 5 +
(
5
2

)
= 18.
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Generating Functions

Consider the following generating functions of
OPk:
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Generating Functions

Consider the following generating functions of
OPk:

ϕk(a;x, y, t, u)

=
∑

π ∈OPk

x(mak+bInv)π ycinvLSB π tinv π ucinv πa|π|,

where |π| = n if π is an ordered partition of [n].
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Generating Functions

Consider the following generating functions of
OPk:

ψk(a;x, y, t, u)

=
∑

π ∈OPk

x(lmak+bInv)π ycinvLSB π tinv π ucinv π a|π|,

where |π| = n if π is an ordered partition of [n].

Euler-Mahonian Statistics of Ordered Partitions – p.18/35



Main Result

Definition
[n]p,q = pn−qn

p−q
: p, q-integer

Euler-Mahonian Statistics of Ordered Partitions – p.19/35



Main Result

Definition
[n]p,q = pn−qn

p−q
: p, q-integer

[n]p,q! = [1]p,q[2]p,q · · · [n]p,q : p, q-factorial
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Main Result

Definition
[n]p,q = pn−qn

p−q
: p, q-integer

[n]p,q! = [1]p,q[2]p,q · · · [n]p,q : p, q-factorial
[
n
k

]
p,q

=
[n]p,q!

[k]p,q![n−k]p,q!
: p, q-binomial coefficient
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Main Result

One of the main results of our paper is the
following theorem:
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Main Result

One of the main results of our paper is the
following theorem:
Theorem We have

ϕk(a;x, y, t, u) =
ak (xy)(

k
2)[k]tx,uy!∏k

i=1(1 − a[i]x,y)
,
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Main Result

One of the main results of our paper is the
following theorem:
Theorem We have

ϕk(a;x, y, t, u) =
ak (xy)(

k
2)[k]tx,uy!∏k

i=1(1 − a[i]x,y)
,

ψk(a;x, y, t, u) =
ak(xy)(

k
2) [k]tx,uy!∏k

i=1(1 − a[i]x,y)
.
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Trace

Let π = B1 −B2 − · · · −Bk be in OPk
n.
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Trace

Let π = B1 −B2 − · · · −Bk be in OPk
n.

The restriction Bj ∩ [i] of a block Bj on [i] is
said to be active if Bj 6= [i] and Bj ∩ [i] 6= ∅.
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Trace

Let π = B1 −B2 − · · · −Bk be in OPk
n.

The restriction Bj ∩ [i] of a block Bj on [i] is
said to be complete if Bj ⊆ [i].
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Trace

Let π = B1 −B2 − · · · −Bk be in OPk
n.

Ti(π) = B1(≤ i) −B2(≤ i) − · · · −Bk(≤ i),

where Bj(≤ i) = Bj∩[i], while empty sets are
omitted. The sequence (Ti(π))1≤i≤n is called
the trace of the ordered partition π.

Euler-Mahonian Statistics of Ordered Partitions – p.20/35



Trace

Let π = B1 −B2 − · · · −Bk be in OPk
n.

Ti(π) = B1(≤ i) −B2(≤ i) − · · · −Bk(≤ i),

where Bj(≤ i) = Bj∩[i], while empty sets are
omitted. The sequence (Ti(π))1≤i≤n is called
the trace of the ordered partition π.

Example

π = 6 8 − 5 − 1 4 7 − 3 9 − 2
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Trace

Let π = B1 −B2 − · · · −Bk be in OPk
n.

Ti(π) = B1(≤ i) −B2(≤ i) − · · · −Bk(≤ i),

where Bj(≤ i) = Bj∩[i], while empty sets are
omitted. The sequence (Ti(π))1≤i≤n is called
the trace of the ordered partition π.

Example

π = 6 8 − 5 − 1 4 7 − 3 9 − 2

T1(π) = 1
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Trace

Let π = B1 −B2 − · · · −Bk be in OPk
n.

Ti(π) = B1(≤ i) −B2(≤ i) − · · · −Bk(≤ i),

where Bj(≤ i) = Bj∩[i], while empty sets are
omitted. The sequence (Ti(π))1≤i≤n is called
the trace of the ordered partition π.

Example

π = 6 8 − 5 − 1 4 7 − 3 9 − 2

T2(π) = 1 − 2
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Trace

Let π = B1 −B2 − · · · −Bk be in OPk
n.

Ti(π) = B1(≤ i) −B2(≤ i) − · · · −Bk(≤ i),

where Bj(≤ i) = Bj∩[i], while empty sets are
omitted. The sequence (Ti(π))1≤i≤n is called
the trace of the ordered partition π.

Example

π = 6 8 − 5 − 1 4 7 − 3 9 − 2

T3(π) = 1 − 3 − 2
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Trace

Let π = B1 −B2 − · · · −Bk be in OPk
n.

Ti(π) = B1(≤ i) −B2(≤ i) − · · · −Bk(≤ i),

where Bj(≤ i) = Bj∩[i], while empty sets are
omitted. The sequence (Ti(π))1≤i≤n is called
the trace of the ordered partition π.

Example

π = 6 8 − 5 − 1 4 7 − 3 9 − 2

T4(π) = 1 4 − 3 − 2
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Trace

Let π = B1 −B2 − · · · −Bk be in OPk
n.

Ti(π) = B1(≤ i) −B2(≤ i) − · · · −Bk(≤ i),

where Bj(≤ i) = Bj∩[i], while empty sets are
omitted. The sequence (Ti(π))1≤i≤n is called
the trace of the ordered partition π.

Example

π = 6 8 − 5 − 1 4 7 − 3 9 − 2

T5(π) = 5 − 1 4 − 3 − 2
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Trace

Let π = B1 −B2 − · · · −Bk be in OPk
n.

Ti(π) = B1(≤ i) −B2(≤ i) − · · · −Bk(≤ i),

where Bj(≤ i) = Bj∩[i], while empty sets are
omitted. The sequence (Ti(π))1≤i≤n is called
the trace of the ordered partition π.

Example

π = 6 8 − 5 − 1 4 7 − 3 9 − 2

T6(π) = 6 − 5 − 1 4 − 3 − 2
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Trace

Let π = B1 −B2 − · · · −Bk be in OPk
n.

Ti(π) = B1(≤ i) −B2(≤ i) − · · · −Bk(≤ i),

where Bj(≤ i) = Bj∩[i], while empty sets are
omitted. The sequence (Ti(π))1≤i≤n is called
the trace of the ordered partition π.

Example

π = 6 8 − 5 − 1 4 7 − 3 9 − 2

T7(π) = 6 − 5 − 1 4 7 − 3 − 2
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Trace

Let π = B1 −B2 − · · · −Bk be in OPk
n.

Ti(π) = B1(≤ i) −B2(≤ i) − · · · −Bk(≤ i),

where Bj(≤ i) = Bj∩[i], while empty sets are
omitted. The sequence (Ti(π))1≤i≤n is called
the trace of the ordered partition π.

Example

π = 6 8 − 5 − 1 4 7 − 3 9 − 2

T8(π) = 6 8 − 5 − 1 4 7 − 3 − 2
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Trace

Let π = B1 −B2 − · · · −Bk be in OPk
n.

Ti(π) = B1(≤ i) −B2(≤ i) − · · · −Bk(≤ i),

where Bj(≤ i) = Bj∩[i], while empty sets are
omitted. The sequence (Ti(π))1≤i≤n is called
the trace of the ordered partition π.

Example

π = 6 8 − 5 − 1 4 7 − 3 9 − 2

T9(π) = 6 8 − 5 − 1 4 7 − 3 9 − 2
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Trace

Let π = B1 −B2 − · · · −Bk be in OPk
n.

Ti(π) = B1(≤ i) −B2(≤ i) − · · · −Bk(≤ i),

where Bj(≤ i) = Bj∩[i], while empty sets are
omitted. The sequence (Ti(π))1≤i≤n is called
the trace of the ordered partition π.

Definition

xi = ♯complete blocks of Ti(π) : abscissa
yi = ♯active blocks of Ti(π) : height
Let us call {(xi, yi)}1≤i≤n the form of π.
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Path

π = {6} − {3, 5, 7} − {1, 4} − {2, 8}

i-th trace of π form of π-surjection

1-th trace of π
{1, · · · }

active blocks

complete blocks

-

6

0 1 2 3 40
1
2
3

•
•

Euler-Mahonian Statistics of Ordered Partitions – p.21/35



Path

π = {6} − {3, 5, 7} − {1, 4} − {2, 8}

i-th trace of π form of π-surjection

2-th trace of π
{1, · · · } − {2, · · · }

active blocks

complete blocks

-

6

0 1 2 3 40
1
2
3

•
•
•
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Path

π = {6} − {3, 5, 7} − {1, 4} − {2, 8}

i-th trace of π form of π-surjection

3-th trace of π
{3, · · · } − {1, · · · } − {2, · · · }

active blocks

complete blocks

-

6

0 1 2 3 40
1
2
3

•
•
•
•
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Path

π = {6} − {3, 5, 7} − {1, 4} − {2, 8}

i-th trace of π form of π-surjection

4-th trace of π
{3, · · · } − {1, 4} − {2, · · · }

active blocks

complete blocks

-

6

0 1 2 3 40
1
2
3

•
•
•
•

•
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Path

π = {6} − {3, 5, 7} − {1, 4} − {2, 8}

i-th trace of π form of π-surjection

5-th trace of π
{3, 5, · · · } − {1, 4} − {2, · · · }

active blocks

complete blocks

-

6

0 1 2 3 40
1
2
3

•
•
•
•

•	
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Path

π = {6} − {3, 5, 7} − {1, 4} − {2, 8}

i-th trace of π form of π-surjection

6-th trace of π
{6} − {3, 5, · · · } − {1, 4} − {2, · · · }

active blocks

complete blocks

-

6

0 1 2 3 40
1
2
3

•
•
•
•

•	 •
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Path

π = {6} − {3, 5, 7} − {1, 4} − {2, 8}

i-th trace of π form of π-surjection

7-th trace of π
{6} − {3, 5, 7} − {1, 4} − {2, · · · }

active blocks

complete blocks

-

6

0 1 2 3 40
1
2
3

•
•
•
•

•	 •
•
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Path

π = {6} − {3, 5, 7} − {1, 4} − {2, 8}

i-th trace of π form of π-surjection

8-th trace of π
{6} − {3, 5, 7} − {1, 4} − {2, 8}

active blocks

complete blocks

-

6

0 1 2 3 40
1
2
3

•
•
•
•

• •
•

	

•
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Path

π = {6} − {3, 5, 7} − {1, 4} − {2, 8}

i-th trace of π form of π-surjection

Thus the following path correspond to the orderd
partition π = {6} − {3, 5, 7} − {1, 4} − {2, 8}.

active blocks

complete blocks

-

6

0 1 2 3 40
1
2
3

•
•
•
•

• •
•

•
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Choice

π = {6} − {3, 5, 7} − {1, 4} − {2, 8}.
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Choice

π = {6} − {3, 5, 7} − {1, 4} − {2, 8}.

T6(π) = {6} − {3, 5, · · · } − {1, 4} − {2, · · · }.
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Choice

π = {6} − {3, 5, 7} − {1, 4} − {2, 8}.

T6(π) = {6} − {3, 5, · · · } − {1, 4} − {2, · · · }.

Form of T6(π) = (2, 2)
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Choice

π = {6} − {3, 5, 7} − {1, 4} − {2, 8}.

T6(π) = {6} − {3, 5, · · · } − {1, 4} − {2, · · · }.

Form of T6(π) = (2, 2)

2 + 2 + 1 = 5 possibilities to open a new block or
insert a singleton into T6(π).

{6} − {3, 5, · · · } − {1, 4} − {2, · · · }

↑ ↑ ↑ ↑ ↑

1 2 3 4 5
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Choice

π = {6} − {3, 5, 7} − {1, 4} − {2, 8}.

T6(π) = {6} − {3, 5, · · · } − {1, 4} − {2, · · · }.

Form of T6(π) = (2, 2)

2 possibilities to close an active block or add a
transient into T6(π).

{6} − {3, 5, · · · } − {1, 4} − {2, · · · }

↑ ↑

1 2
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Path Diagram

Definition
A path diagram of depth k and length n
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Path Diagram

Definition
A path diagram of depth k and length n is a pair
(ω, ξ):

⋆ ω is a path in N
2 of length n from (0, 0) to

(k, 0), whose steps are

North, East, South-East or Null .
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Path Diagram

Definition
A path diagram of depth k and length n is a pair
(ω, ξ):

⋆ ξ = (ξi)1≤i≤n is a sequence of integers
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Path Diagram

Definition
A path diagram of depth k and length n is a pair
(ω, ξ):

⋆ ξ = (ξi)1≤i≤n is a sequence of integers such
that:

♠ 1 ≤ ξi ≤ q if the i-th step is Null or

South-East, of height q,
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Path Diagram

Definition
A path diagram of depth k and length n is a pair
(ω, ξ):

⋆ ξ = (ξi)1≤i≤n is a sequence of integers such
that:

♠ 1 ≤ ξi ≤ q if the i-th step is Null or

South-East, of height q,

♠ 1 ≤ ξi ≤ p+ q + 1 if the i-th step is

North or East, of abscissa p and height q.
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Path

π = {6} − {3, 5, 7} − {1, 4} − {2, 8}

i-th trace of π path diagram of π� --bijection

1-th trace of π
{1, · · · }

ξ1 = 1 active blocks

complete blocks

-

6

0 1 2 3 40
1
2
3

•
•
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Path

π = {6} − {3, 5, 7} − {1, 4} − {2, 8}

i-th trace of π path diagram of π� --bijection

2-th trace of π
{1, · · · } − {2, · · · }

ξ2 = 2 active blocks

complete blocks

-

6

0 1 2 3 40
1
2
3

•
•
•
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Path

π = {6} − {3, 5, 7} − {1, 4} − {2, 8}

i-th trace of π path diagram of π� --bijection

3-th trace of π
{3, · · · } − {1, · · · } − {2, · · · }

ξ3 = 1 active blocks

complete blocks

-

6

0 1 2 3 40
1
2
3

•
•
•
•
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Path

π = {6} − {3, 5, 7} − {1, 4} − {2, 8}

i-th trace of π path diagram of π� --bijection

4-th trace of π
{3, · · · } − {1, 4} − {2, · · · }

ξ4 = 2 active blocks

complete blocks

-

6

0 1 2 3 40
1
2
3

•
•
•
•

•
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Path

π = {6} − {3, 5, 7} − {1, 4} − {2, 8}

i-th trace of π path diagram of π� --bijection

5-th trace of π
{3, 5, · · · } − {1, 4} − {2, · · · }

ξ5 = 1 active blocks

complete blocks

-

6

0 1 2 3 40
1
2
3

•
•
•
•

•	
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Path

π = {6} − {3, 5, 7} − {1, 4} − {2, 8}

i-th trace of π path diagram of π� --bijection

6-th trace of π
{6} − {3, 5, · · · } − {1, 4} − {2, · · · }

ξ6 = 1 active blocks

complete blocks

-

6

0 1 2 3 40
1
2
3

•
•
•
•

•	 •
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Path

π = {6} − {3, 5, 7} − {1, 4} − {2, 8}

i-th trace of π path diagram of π� --bijection

7-th trace of π
{6} − {3, 5, 7} − {1, 4} − {2, · · · }

ξ7 = 1 active blocks

complete blocks

-

6

0 1 2 3 40
1
2
3

•
•
•
•

•	 •
•
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Path

π = {6} − {3, 5, 7} − {1, 4} − {2, 8}

i-th trace of π path diagram of π� --bijection

8-th trace of π
{6} − {3, 5, 7} − {1, 4} − {2, 8}

ξ8 = 1 active blocks

complete blocks

-

6

0 1 2 3 40
1
2
3

•
•
•
•

• •
•

	

•
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Path

π = {6} − {3, 5, 7} − {1, 4} − {2, 8}

i-th trace of π path diagram of π� --bijection

Thus we obitain
ω = (N,N,N,S-E,Null,E,S-E,S-E).
ξ = (1, 2, 1, 2, 1, 1, 1, 1) active blocks

complete blocks

-

6

0 1 2 3 40
1
2
3

•
•
•
•

• •
•

•
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The digraph Dk

- - -

-

6

6

6

R

R

R

R

R

R

- -

-

-

-

-

-

6

6

6

6

6 6

6

R

R R

R R

R R
�

�

�

�

�

�

�

�

�

�

�

� �

� �

0 1 2 3 k − 1 k
0

1

2

3

k − 1

k





αp θq [p + q + 1]ε,η if N or E;

βp [q]γ,δ if Null or S-E.

Euler-Mahonian Statistics of Ordered Partitions – p.25/35



The digraph Dk

- - -

-

6

6

6

R

R

R

R

R

R

- -

-

-

-

-

-

6

6

6

6

6 6

6

R

R R

R R

R R
�

�

�

�

�

�

�

�

�

�

�

� �

� �

0 1 2 3 k − 1 k
0

1

2

3

k − 1

k





αp θq [p + q + 1]ε,η if N or E;

βp [q]γ,δ if Null or S-E.

nk = 1 + · · · + (k + 1) = (k+1)(k+2)
2
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The digraph Dk

π (ω, ξ)

(a) if the i-th step of ω is North (resp. East),
then i ∈ O(π) (resp. i ∈ S(π)) and

(lcs + rcs)i(π) = pi−1, losi(π) = ξi − 1,

(lsb + rsb)i(π) = qi−1, rosi(π) = pi−1 + qi−1 + 1 − ξi;
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The digraph Dk

π (ω, ξ)

(b) if the i-th step of ω is South-East (resp. Null),
then i ∈ C(π) (resp. i ∈ T (π)) and

(lcs + rcs)i(π) = pi−1, lsbi(π) = ξi − 1,

(lsb + rsb)i(π) = qi−1 − 1, rsbi(π) = qi−1 − ξi.
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The digraph Dk

Qk(a;α, β, γ, δ, ε, η, θ) :=
∑

π∈OPk

α(lcs + rcs)(O∪S)π β(lcs + rcs)(T ∪C)π γrsb(T ∪C)π

× δlsb(T ∪C)π εros(O∪S)π ηlos(O∪S)π θ(lsb+ rsb)(O∪S)πa|π|

=
∑

w∈Dk:(0,0)→(0,k)

val(w)a|w|
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Transfer-Matrix Method

• D = (V,E) a digraph.
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Transfer-Matrix Method

• D = (V,E) a digraph.

• val : E 7→ R a valuation.
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Transfer-Matrix Method

• D = (V,E) a digraph.

• val : E 7→ R a valuation.

Let A be the adjacency matrix of D, i.e

Aij = val(vi, vj).

Euler-Mahonian Statistics of Ordered Partitions – p.26/35



Transfer-Matrix Method

• D = (V,E) a digraph.

• val : E 7→ R a valuation.

Let A be the adjacency matrix of D, i.e

Aij = val(vi, vj).

Example

• •

•

I
J

�

K
�

v1

v2

v3
t

s

t2

st s3
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Transfer-Matrix Method

• D = (V,E) a digraph.

• val : E 7→ R a valuation.

Let A be the adjacency matrix of D, i.e

Aij = val(vi, vj).

Example

• •

•

I
J

�

K
�

v1

v2

v3
t

s

t2

st s3 -� A =




0 0 s

st t2 0

t s3 0



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Transfer-Matrix Method

A walk of length k is a sequence
w = vi0vi1 . . . vik of points of D such
that (vir , vir+1

) ∈ E.
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Transfer-Matrix Method

A walk of length k is a sequence
w = vi0vi1 . . . vik of points of D such
that (vir , vir+1

) ∈ E.

Theorem
∑

w:vi→vj

val(w)z|w| = (−1)i+j det(I − zA; j, i)

det(I − zA)
.

Euler-Mahonian Statistics of Ordered Partitions – p.27/35



Transfer-Matrix Method

A walk of length k is a sequence
w = vi0vi1 . . . vik of points of D such
that (vir , vir+1

) ∈ E.

Example

• •

•

I
J

�

K
�

v1

v2

v3
t

s

t2

st s3 -� A =




0 0 s

st t2 0

t s3 0




w0 = v3v2v2v1v3v1 walk of length |w0| = 5 and
val(w0) = s3 × t2 × st× s× t = s5t4.
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Transfer-Matrix Method

A walk of length k is a sequence
w = vi0vi1 . . . vik of points of D such
that (vir , vir+1

) ∈ E.

Example

∑

w:v1 7→v3

val(w)z|w| =
det(I2 − z A2; 3, 1)

det(I2 − z A2)

=
zs(1 − zt2)

1 − zt2 + z3s5t+ z2ts− z3t3s
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Determinant Expression

Qk(a; t1, t2, t3, t4, t5, t6, t7) =
∑

w∈Dk:(0,0)→(0,k)

val(w)a|w|

Transfer-matrix method =⇒

= (−1)1+nk
det(I − aAk; nk, 1)

det(I − aAk)
.
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Determinant Expression

For instance, when k = 2, we have

A2 =




0 1 1 0 0 0

0 1 1 t7 [2]t5,t6 t7 [2]t5,t6 0

0 0 0 0 t1 [2]t5,t6 t1 [2]t5,t6

0 0 0 [2]t3,t4 [2]t3,t4 0

0 0 0 0 t2 t2

0 0 0 0 0 0



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Determinant Expression

Q2(a; t) = −
det(I2 − aA2; 6, 1)

det(I2 − aA2)

=
a2[2]t5,t6(at2t7 + t1(1 − a[2]t3,t4))

(1 − a)(1 − a[2]t3,t4)(1 − at2)
.
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Generating Function

In order to prove Steingrímsson’s conjecture, it is
sufficient to evaluate the following special cases
of Qk(a; t):

fk(a;x, y, t, u) = Qk(a;x, x, x, y, t, u, y),

gk(a;x, y, t, u) = Qk(a; 1, x, 1, xy, t, u, y).
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Generating Function

The goal of our proof is the following identity:

fk(a;x, y, t, u) =
akx(

k
2)[k]t,u!∏k

i=1(1 − a[i]x,y)
,

gk(a;x, y, t, u) =
ak [k]t,u!∏k

i=1(1 − axk−i[i]xy)
.
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Generating Function

Let A′
k and A′′

k be the matrices obtained from Ak

by making the substitutions. Let

Mk = Ik − aA′
k and Nk = Ik − aA′′

k.

Then we derive from the above formula that

fk(a;x, y, t, u) =
(−1)1+nk det(Mk;nk, 1)

detMk

,

gk(a;x, y, t, u) =
(−1)1+nk det(Nk;nk, 1)

detNk

.
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Matrix Mk

Example
k = 1

M1 =




1 −a −a

0 1 − a −a

0 0 1



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Matrix Mk

Example k = 2

M2 =




1 −a −a 0 0 0

0 1 − a −a −ay(t + u) −ay(t + u) 0

0 0 1 0 −ax(t + u) −ax(t + u)

0 0 0 1 − a(x + y) −a(x + y) 0

0 0 0 0 1 − ax −ax

0 0 0 0 0 1




.
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Matrix Mk

The matrix Mk is defined inductively as follows:

Mk =




Mk−1 Mk−1

Ok+1,nk−1
M̂k−1



 .

Here M̂k−1 is the (k + 1) × (k + 1) matrix

M̂k−1 =
(
δij − axi−1[n+ 1 − i]x,y(δij + δi+1,j)

)
1≤i,j≤k+1
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Matrix Mk

The matrix Mk is defined inductively as follows:

Mk =




Mk−1 Mk−1

Ok+1,nk−1
M̂k−1



 .

Here Mk−1 is the nk−1 × (k + 1) matrix

Mk−1 =




Onk−2,k+1

M̌k−1




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Matrix Mk

The matrix Mk is defined inductively as follows:

Mk =




Mk−1 Mk−1

Ok+1,nk−1
M̂k−1



 .

with the k × (k + 1) matrix

M̌k−1 =
(
−axi−1yk−i[k]t,u(δij + δi+1,j)

)
1≤i≤k, 1≤j≤k+1

.
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Matrix Mk

The matrix Mk is defined inductively as follows:

Mk =




Mk−1 Mk−1

Ok+1,nk−1
M̂k−1



 .

Theorem

det(Mk;nk, 1) = (−1)(
k
2)akx(

k
2)[k]t,u!

×
k−1∏

m=1

m∏

i=1

(1 − axi[m− i+ 1]x,y).
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Matrix Mk

The matrix Mk is defined inductively as follows:

Mk =




Mk−1 Mk−1

Ok+1,nk−1
M̂k−1



 .

Proof
Use

det




A B

C D



 = detA · det
(
D − CA−1B

)
.

(k) k (k)
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Matrix Nk

Example k = 2

N2(λ, a) =




λ −a −a 0 0 0

0 λ − a −a −ay[2]t,u −ay[2]t,u 0

0 0 λ 0 −a[2]t,u −a[2]t,u

0 0 0 λ − a(1 + xy) −a(1 + xy) 0

0 0 0 0 λ − ax −ax

0 0 0 0 0 λ




.
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Matrix Nk

The matrix Nk is defined inductively as follows:

Nk(λ, a) =




Nk−1(λ, a) Nk−1(λ, a)

Ok+1,nk−1
N̂k−1(λ, a)





Here N̂k−1(λ, a) is the (k + 1) × (k + 1) matrix

N̂n−1(λ, a)

=
(
λδij − axi−1[n+ 1 − i]xy(δij + δi+1,j)

)
1≤i,j≤n+1

Euler-Mahonian Statistics of Ordered Partitions – p.31/35



Matrix Nk

The matrix Nk is defined inductively as follows:

Nk(λ, a) =




Nk−1(λ, a) Nk−1(λ, a)

Ok+1,nk−1
N̂k−1(λ, a)





Here Nk−1(λ, a) is the nk−1 × (k + 1) matrix



Onk−2,k+1

Ňk−1




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Matrix Nk

The matrix Nk is defined inductively as follows:

Nk(λ, a) =




Nk−1(λ, a) Nk−1(λ, a)

Ok+1,nk−1
N̂k−1(λ, a)





with the k × (k + 1) matrix

Ňk−1 =
(
−ayk−i[n]t,u · (δij + δi+1,j)

)
1≤i≤k, 1≤j≤k+1

.
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Matrix Nk

The matrix Nk is defined inductively as follows:

Nk(λ, a) =




Nk−1(λ, a) Nk−1(λ, a)

Ok+1,nk−1
N̂k−1(λ, a)





Proof
Find the eigenvector of each eigenvalue.

Euler-Mahonian Statistics of Ordered Partitions – p.31/35



Eigenvectors

♠ ]n, k[q,r = [n]qr − qn−k[k]qr,
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Eigenvectors

♠ ]n, k[q,r = [n]qr − qn−k[k]qr,

♠
]n
k

[

q,r
=

{∏k−1

i=0
]n,i[q,r

[k]qr!
if 0 ≤ k ≤ n,

0 otherwise.
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Eigenvectors

♠ ]n, k[q,r = [n]qr − qn−k[k]qr,

♠
]n
k

[

q,r
=

{∏k−1

i=0
]n,i[q,r

[k]qr!
if 0 ≤ k ≤ n,

0 otherwise.

Example

♣ ]3, 1[q,r = 1 + qr + q2r2 − q2

♣
]

3
2

[
q,r

= (1+qr+q2r2)(1+qr+q2r2−q2)
(1+qr) .
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Eigenvectors

Define the row vectors X
m,l
n of degree nk as

follows: For 1 ≤ i ≤ k + 1 and 1 ≤ j ≤ i, the(
i(i−1)

2 + j
)

th entry of X
m,l
n is equal to

Xm,l
i,j = (−1)i+m+lx−(m+l−1)(i−m−l)+(j−l

2 )y(
i−m−l

2 )

×
[i−m− l]t,u!

[i−m− l]xy!

[
i− 1

m+ l − 1

]

t,u

]
m

m+ l − j

[

x,y

.
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Eigenvectors

Let k be a positive integer. Let m and l be
positive integers such that 0 ≤ m ≤ k − 1 and
1 ≤ l ≤ k −m. Then we have

X
m,l
k Nk(λ, a) = (λ− axl−1[m]xy) X

m,l
k .
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Conjecture

Consider the following two generating functions
of ordered partitions with k ≥ 0 blocks:

ξk(a;x, y) : =
∑

π ∈OPk

x(mak +bMaj)π ycmajLSB π a|π|,

ηk(a;x, y) : =
∑

π ∈OPk

x(lmak+bMaj)π ycmajLSB π a|π|.
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Conjecture

Conjecture
For k ≥ 0, the following identities would hold:

ξk(a;x, y) =
ak (xy)(

k
2)[k]x,y!∏k

i=1(1 − a[i]x,y)
,

ηk(a;x, y) =
ak(xy)(

k
2) [k]x,y!∏k

i=1(1 − a[i]x,y)
.
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The End of Talk

Thank you!
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